Step |
Hyp |
Ref |
Expression |
1 |
|
opthhausdorff0.a |
⊢ 𝐴 ∈ V |
2 |
|
opthhausdorff0.b |
⊢ 𝐵 ∈ V |
3 |
|
opthhausdorff0.c |
⊢ 𝐶 ∈ V |
4 |
|
opthhausdorff0.d |
⊢ 𝐷 ∈ V |
5 |
|
opthhausdorff0.1 |
⊢ 𝑂 ∈ V |
6 |
|
opthhausdorff0.2 |
⊢ 𝑇 ∈ V |
7 |
|
opthhausdorff0.3 |
⊢ 𝑂 ≠ 𝑇 |
8 |
|
prex |
⊢ { 𝐴 , 𝑂 } ∈ V |
9 |
|
prex |
⊢ { 𝐵 , 𝑇 } ∈ V |
10 |
|
prex |
⊢ { 𝐶 , 𝑂 } ∈ V |
11 |
|
prex |
⊢ { 𝐷 , 𝑇 } ∈ V |
12 |
8 9 10 11
|
preq12b |
⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) ) |
13 |
1 3
|
preqr1 |
⊢ ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } → 𝐴 = 𝐶 ) |
14 |
2 4
|
preqr1 |
⊢ ( { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } → 𝐵 = 𝐷 ) |
15 |
13 14
|
anim12i |
⊢ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
16 |
1 5 4 6
|
preq12b |
⊢ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ↔ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) ) |
17 |
|
eqneqall |
⊢ ( 𝑂 = 𝑇 → ( 𝑂 ≠ 𝑇 → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
18 |
7 17
|
mpi |
⊢ ( 𝑂 = 𝑇 → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
20 |
2 6 3 5
|
preq12b |
⊢ ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ↔ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) ) |
21 |
|
eqneqall |
⊢ ( 𝑂 = 𝑇 → ( 𝑂 ≠ 𝑇 → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
22 |
7 21
|
mpi |
⊢ ( 𝑂 = 𝑇 → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
23 |
22
|
eqcoms |
⊢ ( 𝑇 = 𝑂 → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
25 |
|
simpl |
⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → 𝐴 = 𝑇 ) |
26 |
|
simpr |
⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → 𝑇 = 𝐶 ) |
27 |
25 26
|
sylan9eqr |
⊢ ( ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ∧ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → 𝐴 = 𝐶 ) |
28 |
|
simpl |
⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → 𝐵 = 𝑂 ) |
29 |
|
simpr |
⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → 𝑂 = 𝐷 ) |
30 |
28 29
|
sylan9eq |
⊢ ( ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ∧ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → 𝐵 = 𝐷 ) |
31 |
27 30
|
jca |
⊢ ( ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ∧ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
32 |
31
|
ex |
⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
33 |
24 32
|
jaoi |
⊢ ( ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
34 |
20 33
|
sylbi |
⊢ ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
35 |
34
|
com12 |
⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
36 |
19 35
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
37 |
16 36
|
sylbi |
⊢ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
38 |
37
|
imp |
⊢ ( ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
39 |
15 38
|
jaoi |
⊢ ( ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
40 |
12 39
|
sylbi |
⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
41 |
|
preq1 |
⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ) |
42 |
41
|
adantr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ) |
43 |
|
preq1 |
⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) |
44 |
43
|
adantl |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) |
45 |
42 44
|
preq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ) |
46 |
40 45
|
impbii |
⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |