Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthne.1 | ⊢ 𝐴 ∈ V | |
| opthne.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | opthne | ⊢ ( 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opthne.1 | ⊢ 𝐴 ∈ V | |
| 2 | opthne.2 | ⊢ 𝐵 ∈ V | |
| 3 | opthneg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) |