Metamath Proof Explorer


Theorem opthne

Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)

Ref Expression
Hypotheses opthne.1 𝐴 ∈ V
opthne.2 𝐵 ∈ V
Assertion opthne ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 opthne.1 𝐴 ∈ V
2 opthne.2 𝐵 ∈ V
3 opthneg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) ) )
4 1 2 3 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) )