Step |
Hyp |
Ref |
Expression |
1 |
|
preqr1.a |
⊢ 𝐴 ∈ V |
2 |
|
preqr1.b |
⊢ 𝐵 ∈ V |
3 |
|
preq12b.c |
⊢ 𝐶 ∈ V |
4 |
|
preq12b.d |
⊢ 𝐷 ∈ V |
5 |
1 2 3 4
|
preq12b |
⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
6 |
|
idd |
⊢ ( 𝐴 ≠ 𝐷 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
7 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷 ) |
8 |
|
pm2.21 |
⊢ ( ¬ 𝐴 = 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
9 |
7 8
|
sylbi |
⊢ ( 𝐴 ≠ 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
10 |
9
|
impd |
⊢ ( 𝐴 ≠ 𝐷 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
11 |
6 10
|
jaod |
⊢ ( 𝐴 ≠ 𝐷 → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
12 |
|
orc |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
13 |
11 12
|
impbid1 |
⊢ ( 𝐴 ≠ 𝐷 → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
14 |
5 13
|
syl5bb |
⊢ ( 𝐴 ≠ 𝐷 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |