Metamath Proof Explorer


Theorem opthpr

Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 27-Mar-2007)

Ref Expression
Hypotheses preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
preq12b.c 𝐶 ∈ V
preq12b.d 𝐷 ∈ V
Assertion opthpr ( 𝐴𝐷 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 preqr1.a 𝐴 ∈ V
2 preqr1.b 𝐵 ∈ V
3 preq12b.c 𝐶 ∈ V
4 preq12b.d 𝐷 ∈ V
5 1 2 3 4 preq12b ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) )
6 idd ( 𝐴𝐷 → ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
7 df-ne ( 𝐴𝐷 ↔ ¬ 𝐴 = 𝐷 )
8 pm2.21 ( ¬ 𝐴 = 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) ) )
9 7 8 sylbi ( 𝐴𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) ) )
10 9 impd ( 𝐴𝐷 → ( ( 𝐴 = 𝐷𝐵 = 𝐶 ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
11 6 10 jaod ( 𝐴𝐷 → ( ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) → ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
12 orc ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) )
13 11 12 impbid1 ( 𝐴𝐷 → ( ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
14 5 13 bitrid ( 𝐴𝐷 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )