| Step |
Hyp |
Ref |
Expression |
| 1 |
|
optocl.1 |
⊢ 𝐷 = ( 𝐵 × 𝐶 ) |
| 2 |
|
optocl.2 |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
optocl.3 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜑 ) |
| 4 |
|
elxpi |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 5 |
2
|
eqcoms |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
3 5
|
imbitrid |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜓 ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝜓 ) |
| 8 |
7
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝜓 ) |
| 9 |
4 8
|
syl |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝜓 ) |
| 10 |
9 1
|
eleq2s |
⊢ ( 𝐴 ∈ 𝐷 → 𝜓 ) |