Metamath Proof Explorer


Theorem optocl

Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995) Shorten and reduce axiom usage. (Revised by TM, 29-Dec-2025)

Ref Expression
Hypotheses optocl.1 𝐷 = ( 𝐵 × 𝐶 )
optocl.2 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( 𝜑𝜓 ) )
optocl.3 ( ( 𝑥𝐵𝑦𝐶 ) → 𝜑 )
Assertion optocl ( 𝐴𝐷𝜓 )

Proof

Step Hyp Ref Expression
1 optocl.1 𝐷 = ( 𝐵 × 𝐶 )
2 optocl.2 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( 𝜑𝜓 ) )
3 optocl.3 ( ( 𝑥𝐵𝑦𝐶 ) → 𝜑 )
4 elxpi ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) )
5 2 eqcoms ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
6 3 5 imbitrid ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑥𝐵𝑦𝐶 ) → 𝜓 ) )
7 6 imp ( ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) → 𝜓 )
8 7 exlimivv ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) → 𝜓 )
9 4 8 syl ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝜓 )
10 9 1 eleq2s ( 𝐴𝐷𝜓 )