Metamath Proof Explorer


Theorem opvtxfvi

Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021)

Ref Expression
Hypotheses opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion opvtxfvi ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝑉

Proof

Step Hyp Ref Expression
1 opvtxfvi.v 𝑉 ∈ V
2 opvtxfvi.e 𝐸 ∈ V
3 opvtxfv ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝑉 )
4 1 2 3 mp2an ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝑉