Metamath Proof Explorer
		
		
		
		Description:  A rearrangement of disjuncts, in double deduction form.  (Contributed by Giovanni Mascellani, 19-Mar-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | or32dd.1 | ⊢ ( 𝜑  →  ( 𝜓  →  ( ( 𝜒  ∨  𝜃 )  ∨  𝜏 ) ) ) | 
				
					|  | Assertion | or32dd | ⊢  ( 𝜑  →  ( 𝜓  →  ( ( 𝜒  ∨  𝜏 )  ∨  𝜃 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | or32dd.1 | ⊢ ( 𝜑  →  ( 𝜓  →  ( ( 𝜒  ∨  𝜃 )  ∨  𝜏 ) ) ) | 
						
							| 2 |  | or32 | ⊢ ( ( ( 𝜒  ∨  𝜏 )  ∨  𝜃 )  ↔  ( ( 𝜒  ∨  𝜃 )  ∨  𝜏 ) ) | 
						
							| 3 | 1 2 | imbitrrdi | ⊢ ( 𝜑  →  ( 𝜓  →  ( ( 𝜒  ∨  𝜏 )  ∨  𝜃 ) ) ) |