Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | or3dir | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∨ 𝜏 ) ↔ ( ( 𝜑 ∨ 𝜏 ) ∧ ( 𝜓 ∨ 𝜏 ) ∧ ( 𝜒 ∨ 𝜏 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or3di | ⊢ ( ( 𝜏 ∨ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜏 ∨ 𝜑 ) ∧ ( 𝜏 ∨ 𝜓 ) ∧ ( 𝜏 ∨ 𝜒 ) ) ) | |
2 | orcom | ⊢ ( ( 𝜏 ∨ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∨ 𝜏 ) ) | |
3 | orcom | ⊢ ( ( 𝜏 ∨ 𝜑 ) ↔ ( 𝜑 ∨ 𝜏 ) ) | |
4 | orcom | ⊢ ( ( 𝜏 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜏 ) ) | |
5 | orcom | ⊢ ( ( 𝜏 ∨ 𝜒 ) ↔ ( 𝜒 ∨ 𝜏 ) ) | |
6 | 3 4 5 | 3anbi123i | ⊢ ( ( ( 𝜏 ∨ 𝜑 ) ∧ ( 𝜏 ∨ 𝜓 ) ∧ ( 𝜏 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜏 ) ∧ ( 𝜓 ∨ 𝜏 ) ∧ ( 𝜒 ∨ 𝜏 ) ) ) |
7 | 1 2 6 | 3bitr3i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∨ 𝜏 ) ↔ ( ( 𝜑 ∨ 𝜏 ) ∧ ( 𝜓 ∨ 𝜏 ) ∧ ( 𝜒 ∨ 𝜏 ) ) ) |