Metamath Proof Explorer


Theorem or3dir

Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017)

Ref Expression
Assertion or3dir ( ( ( 𝜑𝜓𝜒 ) ∨ 𝜏 ) ↔ ( ( 𝜑𝜏 ) ∧ ( 𝜓𝜏 ) ∧ ( 𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 or3di ( ( 𝜏 ∨ ( 𝜑𝜓𝜒 ) ) ↔ ( ( 𝜏𝜑 ) ∧ ( 𝜏𝜓 ) ∧ ( 𝜏𝜒 ) ) )
2 orcom ( ( 𝜏 ∨ ( 𝜑𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓𝜒 ) ∨ 𝜏 ) )
3 orcom ( ( 𝜏𝜑 ) ↔ ( 𝜑𝜏 ) )
4 orcom ( ( 𝜏𝜓 ) ↔ ( 𝜓𝜏 ) )
5 orcom ( ( 𝜏𝜒 ) ↔ ( 𝜒𝜏 ) )
6 3 4 5 3anbi123i ( ( ( 𝜏𝜑 ) ∧ ( 𝜏𝜓 ) ∧ ( 𝜏𝜒 ) ) ↔ ( ( 𝜑𝜏 ) ∧ ( 𝜓𝜏 ) ∧ ( 𝜒𝜏 ) ) )
7 1 2 6 3bitr3i ( ( ( 𝜑𝜓𝜒 ) ∨ 𝜏 ) ↔ ( ( 𝜑𝜏 ) ∧ ( 𝜓𝜏 ) ∧ ( 𝜒𝜏 ) ) )