Metamath Proof Explorer


Theorem oranabs

Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005) (Proof shortened by Wolf Lammen, 10-Nov-2013)

Ref Expression
Assertion oranabs ( ( ( 𝜑 ∨ ¬ 𝜓 ) ∧ 𝜓 ) ↔ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 biortn ( 𝜓 → ( 𝜑 ↔ ( ¬ 𝜓𝜑 ) ) )
2 orcom ( ( ¬ 𝜓𝜑 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) )
3 1 2 bitr2di ( 𝜓 → ( ( 𝜑 ∨ ¬ 𝜓 ) ↔ 𝜑 ) )
4 3 pm5.32ri ( ( ( 𝜑 ∨ ¬ 𝜓 ) ∧ 𝜓 ) ↔ ( 𝜑𝜓 ) )