Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005) (Proof shortened by Wolf Lammen, 10-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | oranabs | ⊢ ( ( ( 𝜑 ∨ ¬ 𝜓 ) ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biortn | ⊢ ( 𝜓 → ( 𝜑 ↔ ( ¬ 𝜓 ∨ 𝜑 ) ) ) | |
2 | orcom | ⊢ ( ( ¬ 𝜓 ∨ 𝜑 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) ) | |
3 | 1 2 | bitr2di | ⊢ ( 𝜓 → ( ( 𝜑 ∨ ¬ 𝜓 ) ↔ 𝜑 ) ) |
4 | 3 | pm5.32ri | ⊢ ( ( ( 𝜑 ∨ ¬ 𝜓 ) ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |