Description: Associative law for disjunction. Theorem *4.33 of WhiteheadRussell p. 118. (Contributed by NM, 5-Aug-1993) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orass | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orcom | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜒 ∨ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 2 | or12 | ⊢ ( ( 𝜒 ∨ ( 𝜑 ∨ 𝜓 ) ) ↔ ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ) | |
| 3 | orcom | ⊢ ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜒 ) ) | |
| 4 | 3 | orbi2i | ⊢ ( ( 𝜑 ∨ ( 𝜒 ∨ 𝜓 ) ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | 
| 5 | 1 2 4 | 3bitri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |