Metamath Proof Explorer


Theorem orbi1

Description: Theorem *4.37 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion orbi1 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
2 1 orbi1d ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) )