Metamath Proof Explorer


Theorem orbi1i

Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis orbi2i.1 ( 𝜑𝜓 )
Assertion orbi1i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 orbi2i.1 ( 𝜑𝜓 )
2 orcom ( ( 𝜑𝜒 ) ↔ ( 𝜒𝜑 ) )
3 1 orbi2i ( ( 𝜒𝜑 ) ↔ ( 𝜒𝜓 ) )
4 orcom ( ( 𝜒𝜓 ) ↔ ( 𝜓𝜒 ) )
5 2 3 4 3bitri ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) )