Description: Disjunction distributes over the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384 . (Contributed by NM, 8-Jan-2005) (Proof shortened by Wolf Lammen, 4-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | orbidi | ⊢ ( ( 𝜑 ∨ ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74 | ⊢ ( ( ¬ 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 → 𝜒 ) ) ) | |
2 | df-or | ⊢ ( ( 𝜑 ∨ ( 𝜓 ↔ 𝜒 ) ) ↔ ( ¬ 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) | |
3 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
4 | df-or | ⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( ¬ 𝜑 → 𝜒 ) ) | |
5 | 3 4 | bibi12i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 → 𝜒 ) ) ) |
6 | 1 2 5 | 3bitr4i | ⊢ ( ( 𝜑 ∨ ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ 𝜒 ) ) ) |