Metamath Proof Explorer


Theorem orbsta

Description: The Orbit-Stabilizer theorem. The mapping F is a bijection from the cosets of the stabilizer subgroup of A to the orbit of A . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses gasta.1 𝑋 = ( Base ‘ 𝐺 )
gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
orbsta.r = ( 𝐺 ~QG 𝐻 )
orbsta.f 𝐹 = ran ( 𝑘𝑋 ↦ ⟨ [ 𝑘 ] , ( 𝑘 𝐴 ) ⟩ )
orbsta.o 𝑂 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
Assertion orbsta ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐹 : ( 𝑋 / ) –1-1-onto→ [ 𝐴 ] 𝑂 )

Proof

Step Hyp Ref Expression
1 gasta.1 𝑋 = ( Base ‘ 𝐺 )
2 gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
3 orbsta.r = ( 𝐺 ~QG 𝐻 )
4 orbsta.f 𝐹 = ran ( 𝑘𝑋 ↦ ⟨ [ 𝑘 ] , ( 𝑘 𝐴 ) ⟩ )
5 orbsta.o 𝑂 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
6 1 2 3 4 orbstafun ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Fun 𝐹 )
7 simpr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐴𝑌 )
8 7 adantr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → 𝐴𝑌 )
9 1 gaf ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )
10 9 adantr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )
11 10 adantr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )
12 simpr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → 𝑘𝑋 )
13 11 12 8 fovrnd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → ( 𝑘 𝐴 ) ∈ 𝑌 )
14 eqid ( 𝑘 𝐴 ) = ( 𝑘 𝐴 )
15 oveq1 ( = 𝑘 → ( 𝐴 ) = ( 𝑘 𝐴 ) )
16 15 eqeq1d ( = 𝑘 → ( ( 𝐴 ) = ( 𝑘 𝐴 ) ↔ ( 𝑘 𝐴 ) = ( 𝑘 𝐴 ) ) )
17 16 rspcev ( ( 𝑘𝑋 ∧ ( 𝑘 𝐴 ) = ( 𝑘 𝐴 ) ) → ∃ 𝑋 ( 𝐴 ) = ( 𝑘 𝐴 ) )
18 12 14 17 sylancl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → ∃ 𝑋 ( 𝐴 ) = ( 𝑘 𝐴 ) )
19 5 gaorb ( 𝐴 𝑂 ( 𝑘 𝐴 ) ↔ ( 𝐴𝑌 ∧ ( 𝑘 𝐴 ) ∈ 𝑌 ∧ ∃ 𝑋 ( 𝐴 ) = ( 𝑘 𝐴 ) ) )
20 8 13 18 19 syl3anbrc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → 𝐴 𝑂 ( 𝑘 𝐴 ) )
21 ovex ( 𝑘 𝐴 ) ∈ V
22 elecg ( ( ( 𝑘 𝐴 ) ∈ V ∧ 𝐴𝑌 ) → ( ( 𝑘 𝐴 ) ∈ [ 𝐴 ] 𝑂𝐴 𝑂 ( 𝑘 𝐴 ) ) )
23 21 8 22 sylancr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → ( ( 𝑘 𝐴 ) ∈ [ 𝐴 ] 𝑂𝐴 𝑂 ( 𝑘 𝐴 ) ) )
24 20 23 mpbird ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → ( 𝑘 𝐴 ) ∈ [ 𝐴 ] 𝑂 )
25 1 2 gastacl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
26 1 3 eqger ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝑋 )
27 25 26 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Er 𝑋 )
28 1 fvexi 𝑋 ∈ V
29 28 a1i ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝑋 ∈ V )
30 4 24 27 29 qliftf ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( Fun 𝐹𝐹 : ( 𝑋 / ) ⟶ [ 𝐴 ] 𝑂 ) )
31 6 30 mpbid ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐹 : ( 𝑋 / ) ⟶ [ 𝐴 ] 𝑂 )
32 eqid ( 𝑋 / ) = ( 𝑋 / )
33 fveqeq2 ( [ 𝑧 ] = 𝑎 → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) ↔ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) )
34 eqeq1 ( [ 𝑧 ] = 𝑎 → ( [ 𝑧 ] = 𝑏𝑎 = 𝑏 ) )
35 33 34 imbi12d ( [ 𝑧 ] = 𝑎 → ( ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) → [ 𝑧 ] = 𝑏 ) ↔ ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
36 35 ralbidv ( [ 𝑧 ] = 𝑎 → ( ∀ 𝑏 ∈ ( 𝑋 / ) ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) → [ 𝑧 ] = 𝑏 ) ↔ ∀ 𝑏 ∈ ( 𝑋 / ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
37 fveq2 ( [ 𝑤 ] = 𝑏 → ( 𝐹 ‘ [ 𝑤 ] ) = ( 𝐹𝑏 ) )
38 37 eqeq2d ( [ 𝑤 ] = 𝑏 → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹 ‘ [ 𝑤 ] ) ↔ ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) ) )
39 eqeq2 ( [ 𝑤 ] = 𝑏 → ( [ 𝑧 ] = [ 𝑤 ] ↔ [ 𝑧 ] = 𝑏 ) )
40 38 39 imbi12d ( [ 𝑤 ] = 𝑏 → ( ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹 ‘ [ 𝑤 ] ) → [ 𝑧 ] = [ 𝑤 ] ) ↔ ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) → [ 𝑧 ] = 𝑏 ) ) )
41 1 2 3 4 orbstaval ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑧𝑋 ) → ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝑧 𝐴 ) )
42 41 adantrr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝑧 𝐴 ) )
43 1 2 3 4 orbstaval ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑤𝑋 ) → ( 𝐹 ‘ [ 𝑤 ] ) = ( 𝑤 𝐴 ) )
44 43 adantrl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( 𝐹 ‘ [ 𝑤 ] ) = ( 𝑤 𝐴 ) )
45 42 44 eqeq12d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹 ‘ [ 𝑤 ] ) ↔ ( 𝑧 𝐴 ) = ( 𝑤 𝐴 ) ) )
46 1 2 3 gastacos ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( 𝑧 𝑤 ↔ ( 𝑧 𝐴 ) = ( 𝑤 𝐴 ) ) )
47 27 adantr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → Er 𝑋 )
48 simprl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → 𝑧𝑋 )
49 47 48 erth ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( 𝑧 𝑤 ↔ [ 𝑧 ] = [ 𝑤 ] ) )
50 45 46 49 3bitr2d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹 ‘ [ 𝑤 ] ) ↔ [ 𝑧 ] = [ 𝑤 ] ) )
51 50 biimpd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹 ‘ [ 𝑤 ] ) → [ 𝑧 ] = [ 𝑤 ] ) )
52 51 anassrs ( ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑧𝑋 ) ∧ 𝑤𝑋 ) → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹 ‘ [ 𝑤 ] ) → [ 𝑧 ] = [ 𝑤 ] ) )
53 32 40 52 ectocld ( ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑧𝑋 ) ∧ 𝑏 ∈ ( 𝑋 / ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) → [ 𝑧 ] = 𝑏 ) )
54 53 ralrimiva ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑧𝑋 ) → ∀ 𝑏 ∈ ( 𝑋 / ) ( ( 𝐹 ‘ [ 𝑧 ] ) = ( 𝐹𝑏 ) → [ 𝑧 ] = 𝑏 ) )
55 32 36 54 ectocld ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑎 ∈ ( 𝑋 / ) ) → ∀ 𝑏 ∈ ( 𝑋 / ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
56 55 ralrimiva ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ∀ 𝑎 ∈ ( 𝑋 / ) ∀ 𝑏 ∈ ( 𝑋 / ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
57 dff13 ( 𝐹 : ( 𝑋 / ) –1-1→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ) ⟶ [ 𝐴 ] 𝑂 ∧ ∀ 𝑎 ∈ ( 𝑋 / ) ∀ 𝑏 ∈ ( 𝑋 / ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
58 31 56 57 sylanbrc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐹 : ( 𝑋 / ) –1-1→ [ 𝐴 ] 𝑂 )
59 vex ∈ V
60 elecg ( ( ∈ V ∧ 𝐴𝑌 ) → ( ∈ [ 𝐴 ] 𝑂𝐴 𝑂 ) )
61 59 7 60 sylancr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( ∈ [ 𝐴 ] 𝑂𝐴 𝑂 ) )
62 5 gaorb ( 𝐴 𝑂 ↔ ( 𝐴𝑌𝑌 ∧ ∃ 𝑤𝑋 ( 𝑤 𝐴 ) = ) )
63 61 62 bitrdi ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( ∈ [ 𝐴 ] 𝑂 ↔ ( 𝐴𝑌𝑌 ∧ ∃ 𝑤𝑋 ( 𝑤 𝐴 ) = ) ) )
64 63 biimpa ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ∈ [ 𝐴 ] 𝑂 ) → ( 𝐴𝑌𝑌 ∧ ∃ 𝑤𝑋 ( 𝑤 𝐴 ) = ) )
65 64 simp3d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ∈ [ 𝐴 ] 𝑂 ) → ∃ 𝑤𝑋 ( 𝑤 𝐴 ) = )
66 3 ovexi ∈ V
67 66 ecelqsi ( 𝑤𝑋 → [ 𝑤 ] ∈ ( 𝑋 / ) )
68 43 eqcomd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑤𝑋 ) → ( 𝑤 𝐴 ) = ( 𝐹 ‘ [ 𝑤 ] ) )
69 fveq2 ( 𝑧 = [ 𝑤 ] → ( 𝐹𝑧 ) = ( 𝐹 ‘ [ 𝑤 ] ) )
70 69 rspceeqv ( ( [ 𝑤 ] ∈ ( 𝑋 / ) ∧ ( 𝑤 𝐴 ) = ( 𝐹 ‘ [ 𝑤 ] ) ) → ∃ 𝑧 ∈ ( 𝑋 / ) ( 𝑤 𝐴 ) = ( 𝐹𝑧 ) )
71 67 68 70 syl2an2 ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑤𝑋 ) → ∃ 𝑧 ∈ ( 𝑋 / ) ( 𝑤 𝐴 ) = ( 𝐹𝑧 ) )
72 eqeq1 ( ( 𝑤 𝐴 ) = → ( ( 𝑤 𝐴 ) = ( 𝐹𝑧 ) ↔ = ( 𝐹𝑧 ) ) )
73 72 rexbidv ( ( 𝑤 𝐴 ) = → ( ∃ 𝑧 ∈ ( 𝑋 / ) ( 𝑤 𝐴 ) = ( 𝐹𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) ) )
74 71 73 syl5ibcom ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑤𝑋 ) → ( ( 𝑤 𝐴 ) = → ∃ 𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) ) )
75 74 rexlimdva ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( ∃ 𝑤𝑋 ( 𝑤 𝐴 ) = → ∃ 𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) ) )
76 75 imp ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ∃ 𝑤𝑋 ( 𝑤 𝐴 ) = ) → ∃ 𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) )
77 65 76 syldan ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ∈ [ 𝐴 ] 𝑂 ) → ∃ 𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) )
78 77 ralrimiva ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ∀ ∈ [ 𝐴 ] 𝑂𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) )
79 dffo3 ( 𝐹 : ( 𝑋 / ) –onto→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ) ⟶ [ 𝐴 ] 𝑂 ∧ ∀ ∈ [ 𝐴 ] 𝑂𝑧 ∈ ( 𝑋 / ) = ( 𝐹𝑧 ) ) )
80 31 78 79 sylanbrc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐹 : ( 𝑋 / ) –onto→ [ 𝐴 ] 𝑂 )
81 df-f1o ( 𝐹 : ( 𝑋 / ) –1-1-onto→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ) –1-1→ [ 𝐴 ] 𝑂𝐹 : ( 𝑋 / ) –onto→ [ 𝐴 ] 𝑂 ) )
82 58 80 81 sylanbrc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐹 : ( 𝑋 / ) –1-1-onto→ [ 𝐴 ] 𝑂 )