| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gasta.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gasta.2 | ⊢ 𝐻  =  { 𝑢  ∈  𝑋  ∣  ( 𝑢  ⊕  𝐴 )  =  𝐴 } | 
						
							| 3 |  | orbsta.r | ⊢  ∼   =  ( 𝐺  ~QG  𝐻 ) | 
						
							| 4 |  | orbsta.f | ⊢ 𝐹  =  ran  ( 𝑘  ∈  𝑋  ↦  〈 [ 𝑘 ]  ∼  ,  ( 𝑘  ⊕  𝐴 ) 〉 ) | 
						
							| 5 |  | orbsta.o | ⊢ 𝑂  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝑌  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } | 
						
							| 6 | 1 2 3 4 | orbstafun | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  Fun  𝐹 ) | 
						
							| 7 |  | simpr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐴  ∈  𝑌 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 9 | 1 | gaf | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 10 | 9 | adantr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 12 |  | simpr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  𝑘  ∈  𝑋 ) | 
						
							| 13 | 11 12 8 | fovcdmd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝑘  ⊕  𝐴 )  ∈  𝑌 ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑘  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) | 
						
							| 15 |  | oveq1 | ⊢ ( ℎ  =  𝑘  →  ( ℎ  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( ℎ  =  𝑘  →  ( ( ℎ  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 )  ↔  ( 𝑘  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) ) ) | 
						
							| 17 | 16 | rspcev | ⊢ ( ( 𝑘  ∈  𝑋  ∧  ( 𝑘  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) )  →  ∃ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) ) | 
						
							| 18 | 12 14 17 | sylancl | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  ∃ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) ) | 
						
							| 19 | 5 | gaorb | ⊢ ( 𝐴 𝑂 ( 𝑘  ⊕  𝐴 )  ↔  ( 𝐴  ∈  𝑌  ∧  ( 𝑘  ⊕  𝐴 )  ∈  𝑌  ∧  ∃ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) ) ) | 
						
							| 20 | 8 13 18 19 | syl3anbrc | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  𝐴 𝑂 ( 𝑘  ⊕  𝐴 ) ) | 
						
							| 21 |  | ovex | ⊢ ( 𝑘  ⊕  𝐴 )  ∈  V | 
						
							| 22 |  | elecg | ⊢ ( ( ( 𝑘  ⊕  𝐴 )  ∈  V  ∧  𝐴  ∈  𝑌 )  →  ( ( 𝑘  ⊕  𝐴 )  ∈  [ 𝐴 ] 𝑂  ↔  𝐴 𝑂 ( 𝑘  ⊕  𝐴 ) ) ) | 
						
							| 23 | 21 8 22 | sylancr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝑘  ⊕  𝐴 )  ∈  [ 𝐴 ] 𝑂  ↔  𝐴 𝑂 ( 𝑘  ⊕  𝐴 ) ) ) | 
						
							| 24 | 20 23 | mpbird | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝑘  ⊕  𝐴 )  ∈  [ 𝐴 ] 𝑂 ) | 
						
							| 25 | 1 2 | gastacl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 26 | 1 3 | eqger | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →   ∼   Er  𝑋 ) | 
						
							| 28 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝑋  ∈  V ) | 
						
							| 30 | 4 24 27 29 | qliftf | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ( Fun  𝐹  ↔  𝐹 : ( 𝑋  /   ∼  ) ⟶ [ 𝐴 ] 𝑂 ) ) | 
						
							| 31 | 6 30 | mpbid | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐹 : ( 𝑋  /   ∼  ) ⟶ [ 𝐴 ] 𝑂 ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑋  /   ∼  )  =  ( 𝑋  /   ∼  ) | 
						
							| 33 |  | fveqeq2 | ⊢ ( [ 𝑧 ]  ∼   =  𝑎  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 34 |  | eqeq1 | ⊢ ( [ 𝑧 ]  ∼   =  𝑎  →  ( [ 𝑧 ]  ∼   =  𝑏  ↔  𝑎  =  𝑏 ) ) | 
						
							| 35 | 33 34 | imbi12d | ⊢ ( [ 𝑧 ]  ∼   =  𝑎  →  ( ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 )  →  [ 𝑧 ]  ∼   =  𝑏 )  ↔  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( [ 𝑧 ]  ∼   =  𝑎  →  ( ∀ 𝑏  ∈  ( 𝑋  /   ∼  ) ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 )  →  [ 𝑧 ]  ∼   =  𝑏 )  ↔  ∀ 𝑏  ∈  ( 𝑋  /   ∼  ) ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( [ 𝑤 ]  ∼   =  𝑏  →  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( [ 𝑤 ]  ∼   =  𝑏  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  ↔  ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 39 |  | eqeq2 | ⊢ ( [ 𝑤 ]  ∼   =  𝑏  →  ( [ 𝑧 ]  ∼   =  [ 𝑤 ]  ∼   ↔  [ 𝑧 ]  ∼   =  𝑏 ) ) | 
						
							| 40 | 38 39 | imbi12d | ⊢ ( [ 𝑤 ]  ∼   =  𝑏  →  ( ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  →  [ 𝑧 ]  ∼   =  [ 𝑤 ]  ∼  )  ↔  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 )  →  [ 𝑧 ]  ∼   =  𝑏 ) ) ) | 
						
							| 41 | 1 2 3 4 | orbstaval | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑧  ∈  𝑋 )  →  ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝑧  ⊕  𝐴 ) ) | 
						
							| 42 | 41 | adantrr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝑧  ⊕  𝐴 ) ) | 
						
							| 43 | 1 2 3 4 | orbstaval | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑤  ∈  𝑋 )  →  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  =  ( 𝑤  ⊕  𝐴 ) ) | 
						
							| 44 | 43 | adantrl | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  =  ( 𝑤  ⊕  𝐴 ) ) | 
						
							| 45 | 42 44 | eqeq12d | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  ↔  ( 𝑧  ⊕  𝐴 )  =  ( 𝑤  ⊕  𝐴 ) ) ) | 
						
							| 46 | 1 2 3 | gastacos | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑧  ∼  𝑤  ↔  ( 𝑧  ⊕  𝐴 )  =  ( 𝑤  ⊕  𝐴 ) ) ) | 
						
							| 47 | 27 | adantr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →   ∼   Er  𝑋 ) | 
						
							| 48 |  | simprl | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 49 | 47 48 | erth | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑧  ∼  𝑤  ↔  [ 𝑧 ]  ∼   =  [ 𝑤 ]  ∼  ) ) | 
						
							| 50 | 45 46 49 | 3bitr2d | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  ↔  [ 𝑧 ]  ∼   =  [ 𝑤 ]  ∼  ) ) | 
						
							| 51 | 50 | biimpd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  →  [ 𝑧 ]  ∼   =  [ 𝑤 ]  ∼  ) ) | 
						
							| 52 | 51 | anassrs | ⊢ ( ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑧  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  )  →  [ 𝑧 ]  ∼   =  [ 𝑤 ]  ∼  ) ) | 
						
							| 53 | 32 40 52 | ectocld | ⊢ ( ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑧  ∈  𝑋 )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 )  →  [ 𝑧 ]  ∼   =  𝑏 ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑧  ∈  𝑋 )  →  ∀ 𝑏  ∈  ( 𝑋  /   ∼  ) ( ( 𝐹 ‘ [ 𝑧 ]  ∼  )  =  ( 𝐹 ‘ 𝑏 )  →  [ 𝑧 ]  ∼   =  𝑏 ) ) | 
						
							| 55 | 32 36 54 | ectocld | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  ) )  →  ∀ 𝑏  ∈  ( 𝑋  /   ∼  ) ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ∀ 𝑎  ∈  ( 𝑋  /   ∼  ) ∀ 𝑏  ∈  ( 𝑋  /   ∼  ) ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) | 
						
							| 57 |  | dff13 | ⊢ ( 𝐹 : ( 𝑋  /   ∼  ) –1-1→ [ 𝐴 ] 𝑂  ↔  ( 𝐹 : ( 𝑋  /   ∼  ) ⟶ [ 𝐴 ] 𝑂  ∧  ∀ 𝑎  ∈  ( 𝑋  /   ∼  ) ∀ 𝑏  ∈  ( 𝑋  /   ∼  ) ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 58 | 31 56 57 | sylanbrc | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐹 : ( 𝑋  /   ∼  ) –1-1→ [ 𝐴 ] 𝑂 ) | 
						
							| 59 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 60 |  | elecg | ⊢ ( ( ℎ  ∈  V  ∧  𝐴  ∈  𝑌 )  →  ( ℎ  ∈  [ 𝐴 ] 𝑂  ↔  𝐴 𝑂 ℎ ) ) | 
						
							| 61 | 59 7 60 | sylancr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ( ℎ  ∈  [ 𝐴 ] 𝑂  ↔  𝐴 𝑂 ℎ ) ) | 
						
							| 62 | 5 | gaorb | ⊢ ( 𝐴 𝑂 ℎ  ↔  ( 𝐴  ∈  𝑌  ∧  ℎ  ∈  𝑌  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤  ⊕  𝐴 )  =  ℎ ) ) | 
						
							| 63 | 61 62 | bitrdi | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ( ℎ  ∈  [ 𝐴 ] 𝑂  ↔  ( 𝐴  ∈  𝑌  ∧  ℎ  ∈  𝑌  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤  ⊕  𝐴 )  =  ℎ ) ) ) | 
						
							| 64 | 63 | biimpa | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ℎ  ∈  [ 𝐴 ] 𝑂 )  →  ( 𝐴  ∈  𝑌  ∧  ℎ  ∈  𝑌  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤  ⊕  𝐴 )  =  ℎ ) ) | 
						
							| 65 | 64 | simp3d | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ℎ  ∈  [ 𝐴 ] 𝑂 )  →  ∃ 𝑤  ∈  𝑋 ( 𝑤  ⊕  𝐴 )  =  ℎ ) | 
						
							| 66 | 3 | ovexi | ⊢  ∼   ∈  V | 
						
							| 67 | 66 | ecelqsi | ⊢ ( 𝑤  ∈  𝑋  →  [ 𝑤 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 68 | 43 | eqcomd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑤  ∈  𝑋 )  →  ( 𝑤  ⊕  𝐴 )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑧  =  [ 𝑤 ]  ∼   →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  ) ) | 
						
							| 70 | 69 | rspceeqv | ⊢ ( ( [ 𝑤 ]  ∼   ∈  ( 𝑋  /   ∼  )  ∧  ( 𝑤  ⊕  𝐴 )  =  ( 𝐹 ‘ [ 𝑤 ]  ∼  ) )  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ( 𝑤  ⊕  𝐴 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 71 | 67 68 70 | syl2an2 | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑤  ∈  𝑋 )  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ( 𝑤  ⊕  𝐴 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 72 |  | eqeq1 | ⊢ ( ( 𝑤  ⊕  𝐴 )  =  ℎ  →  ( ( 𝑤  ⊕  𝐴 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ℎ  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 73 | 72 | rexbidv | ⊢ ( ( 𝑤  ⊕  𝐴 )  =  ℎ  →  ( ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ( 𝑤  ⊕  𝐴 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 74 | 71 73 | syl5ibcom | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝑤  ⊕  𝐴 )  =  ℎ  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 75 | 74 | rexlimdva | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ( ∃ 𝑤  ∈  𝑋 ( 𝑤  ⊕  𝐴 )  =  ℎ  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 76 | 75 | imp | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤  ⊕  𝐴 )  =  ℎ )  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 77 | 65 76 | syldan | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  ℎ  ∈  [ 𝐴 ] 𝑂 )  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 78 | 77 | ralrimiva | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ∀ ℎ  ∈  [ 𝐴 ] 𝑂 ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 79 |  | dffo3 | ⊢ ( 𝐹 : ( 𝑋  /   ∼  ) –onto→ [ 𝐴 ] 𝑂  ↔  ( 𝐹 : ( 𝑋  /   ∼  ) ⟶ [ 𝐴 ] 𝑂  ∧  ∀ ℎ  ∈  [ 𝐴 ] 𝑂 ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ℎ  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 80 | 31 78 79 | sylanbrc | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐹 : ( 𝑋  /   ∼  ) –onto→ [ 𝐴 ] 𝑂 ) | 
						
							| 81 |  | df-f1o | ⊢ ( 𝐹 : ( 𝑋  /   ∼  ) –1-1-onto→ [ 𝐴 ] 𝑂  ↔  ( 𝐹 : ( 𝑋  /   ∼  ) –1-1→ [ 𝐴 ] 𝑂  ∧  𝐹 : ( 𝑋  /   ∼  ) –onto→ [ 𝐴 ] 𝑂 ) ) | 
						
							| 82 | 58 80 81 | sylanbrc | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐹 : ( 𝑋  /   ∼  ) –1-1-onto→ [ 𝐴 ] 𝑂 ) |