Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gasta.2 |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } |
3 |
|
orbsta.r |
⊢ ∼ = ( 𝐺 ~QG 𝐻 ) |
4 |
|
orbsta.f |
⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) |
5 |
|
orbsta.o |
⊢ 𝑂 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
6 |
1 2 3 4
|
orbstafun |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |
7 |
|
simpr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ 𝑌 ) |
8 |
7
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
9 |
1
|
gaf |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
10 |
9
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
11 |
10
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
12 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
13 |
11 12 8
|
fovrnd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ 𝑌 ) |
14 |
|
eqid |
⊢ ( 𝑘 ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) |
15 |
|
oveq1 |
⊢ ( ℎ = 𝑘 → ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) |
16 |
15
|
eqeq1d |
⊢ ( ℎ = 𝑘 → ( ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ↔ ( 𝑘 ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( 𝑘 ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) |
18 |
12 14 17
|
sylancl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) |
19 |
5
|
gaorb |
⊢ ( 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ↔ ( 𝐴 ∈ 𝑌 ∧ ( 𝑘 ⊕ 𝐴 ) ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) ) |
20 |
8 13 18 19
|
syl3anbrc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ) |
21 |
|
ovex |
⊢ ( 𝑘 ⊕ 𝐴 ) ∈ V |
22 |
|
elecg |
⊢ ( ( ( 𝑘 ⊕ 𝐴 ) ∈ V ∧ 𝐴 ∈ 𝑌 ) → ( ( 𝑘 ⊕ 𝐴 ) ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ) ) |
23 |
21 8 22
|
sylancr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑘 ⊕ 𝐴 ) ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ) ) |
24 |
20 23
|
mpbird |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ [ 𝐴 ] 𝑂 ) |
25 |
1 2
|
gastacl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
1 3
|
eqger |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
27 |
25 26
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∼ Er 𝑋 ) |
28 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
29 |
28
|
a1i |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑋 ∈ V ) |
30 |
4 24 27 29
|
qliftf |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( Fun 𝐹 ↔ 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ) ) |
31 |
6 30
|
mpbid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ) |
32 |
|
eqid |
⊢ ( 𝑋 / ∼ ) = ( 𝑋 / ∼ ) |
33 |
|
fveqeq2 |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
34 |
|
eqeq1 |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( [ 𝑧 ] ∼ = 𝑏 ↔ 𝑎 = 𝑏 ) ) |
35 |
33 34
|
imbi12d |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
36 |
35
|
ralbidv |
⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ↔ ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
37 |
|
fveq2 |
⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( 𝐹 ‘ [ 𝑤 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) ) |
38 |
37
|
eqeq2d |
⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ↔ ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) ) ) |
39 |
|
eqeq2 |
⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ↔ [ 𝑧 ] ∼ = 𝑏 ) ) |
40 |
38 39
|
imbi12d |
⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) → [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ↔ ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ) ) |
41 |
1 2 3 4
|
orbstaval |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝑧 ⊕ 𝐴 ) ) |
42 |
41
|
adantrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝑧 ⊕ 𝐴 ) ) |
43 |
1 2 3 4
|
orbstaval |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝑤 ] ∼ ) = ( 𝑤 ⊕ 𝐴 ) ) |
44 |
43
|
adantrl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ [ 𝑤 ] ∼ ) = ( 𝑤 ⊕ 𝐴 ) ) |
45 |
42 44
|
eqeq12d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ↔ ( 𝑧 ⊕ 𝐴 ) = ( 𝑤 ⊕ 𝐴 ) ) ) |
46 |
1 2 3
|
gastacos |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 ∼ 𝑤 ↔ ( 𝑧 ⊕ 𝐴 ) = ( 𝑤 ⊕ 𝐴 ) ) ) |
47 |
27
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ∼ Er 𝑋 ) |
48 |
|
simprl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
49 |
47 48
|
erth |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 ∼ 𝑤 ↔ [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
50 |
45 46 49
|
3bitr2d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ↔ [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
51 |
50
|
biimpd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) → [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
52 |
51
|
anassrs |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) → [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
53 |
32 40 52
|
ectocld |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑏 ∈ ( 𝑋 / ∼ ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ) |
54 |
53
|
ralrimiva |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ) |
55 |
32 36 54
|
ectocld |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑎 ∈ ( 𝑋 / ∼ ) ) → ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
56 |
55
|
ralrimiva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ 𝑎 ∈ ( 𝑋 / ∼ ) ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
57 |
|
dff13 |
⊢ ( 𝐹 : ( 𝑋 / ∼ ) –1-1→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ∧ ∀ 𝑎 ∈ ( 𝑋 / ∼ ) ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
58 |
31 56 57
|
sylanbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –1-1→ [ 𝐴 ] 𝑂 ) |
59 |
|
vex |
⊢ ℎ ∈ V |
60 |
|
elecg |
⊢ ( ( ℎ ∈ V ∧ 𝐴 ∈ 𝑌 ) → ( ℎ ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ℎ ) ) |
61 |
59 7 60
|
sylancr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ℎ ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ℎ ) ) |
62 |
5
|
gaorb |
⊢ ( 𝐴 𝑂 ℎ ↔ ( 𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) ) |
63 |
61 62
|
bitrdi |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ℎ ∈ [ 𝐴 ] 𝑂 ↔ ( 𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) ) ) |
64 |
63
|
biimpa |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ℎ ∈ [ 𝐴 ] 𝑂 ) → ( 𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) ) |
65 |
64
|
simp3d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ℎ ∈ [ 𝐴 ] 𝑂 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) |
66 |
3
|
ovexi |
⊢ ∼ ∈ V |
67 |
66
|
ecelqsi |
⊢ ( 𝑤 ∈ 𝑋 → [ 𝑤 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
68 |
43
|
eqcomd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ) |
69 |
|
fveq2 |
⊢ ( 𝑧 = [ 𝑤 ] ∼ → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ) |
70 |
69
|
rspceeqv |
⊢ ( ( [ 𝑤 ] ∼ ∈ ( 𝑋 / ∼ ) ∧ ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ) |
71 |
67 68 70
|
syl2an2 |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ) |
72 |
|
eqeq1 |
⊢ ( ( 𝑤 ⊕ 𝐴 ) = ℎ → ( ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ↔ ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
73 |
72
|
rexbidv |
⊢ ( ( 𝑤 ⊕ 𝐴 ) = ℎ → ( ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
74 |
71 73
|
syl5ibcom |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑤 ⊕ 𝐴 ) = ℎ → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
75 |
74
|
rexlimdva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
76 |
75
|
imp |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) |
77 |
65 76
|
syldan |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ℎ ∈ [ 𝐴 ] 𝑂 ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) |
78 |
77
|
ralrimiva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ ℎ ∈ [ 𝐴 ] 𝑂 ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) |
79 |
|
dffo3 |
⊢ ( 𝐹 : ( 𝑋 / ∼ ) –onto→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ∧ ∀ ℎ ∈ [ 𝐴 ] 𝑂 ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
80 |
31 78 79
|
sylanbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –onto→ [ 𝐴 ] 𝑂 ) |
81 |
|
df-f1o |
⊢ ( 𝐹 : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ∼ ) –1-1→ [ 𝐴 ] 𝑂 ∧ 𝐹 : ( 𝑋 / ∼ ) –onto→ [ 𝐴 ] 𝑂 ) ) |
82 |
58 80 81
|
sylanbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ) |