| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orbsta2.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | orbsta2.h | ⊢ 𝐻  =  { 𝑢  ∈  𝑋  ∣  ( 𝑢  ⊕  𝐴 )  =  𝐴 } | 
						
							| 3 |  | orbsta2.r | ⊢  ∼   =  ( 𝐺  ~QG  𝐻 ) | 
						
							| 4 |  | orbsta2.o | ⊢ 𝑂  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝑌  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } | 
						
							| 5 | 1 2 | gastacl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  𝑋  ∈  Fin ) | 
						
							| 8 | 1 3 6 7 | lagsubg2 | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  ·  ( ♯ ‘ 𝐻 ) ) ) | 
						
							| 9 |  | pwfi | ⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin ) | 
						
							| 10 | 7 9 | sylib | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  𝒫  𝑋  ∈  Fin ) | 
						
							| 11 | 1 3 | eqger | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 ) | 
						
							| 12 | 6 11 | syl | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →   ∼   Er  𝑋 ) | 
						
							| 13 | 12 | qsss | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( 𝑋  /   ∼  )  ⊆  𝒫  𝑋 ) | 
						
							| 14 | 10 13 | ssfid | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( 𝑋  /   ∼  )  ∈  Fin ) | 
						
							| 15 |  | eqid | ⊢ ran  ( 𝑘  ∈  𝑋  ↦  〈 [ 𝑘 ]  ∼  ,  ( 𝑘  ⊕  𝐴 ) 〉 )  =  ran  ( 𝑘  ∈  𝑋  ↦  〈 [ 𝑘 ]  ∼  ,  ( 𝑘  ⊕  𝐴 ) 〉 ) | 
						
							| 16 | 1 2 3 15 4 | orbsta | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  ran  ( 𝑘  ∈  𝑋  ↦  〈 [ 𝑘 ]  ∼  ,  ( 𝑘  ⊕  𝐴 ) 〉 ) : ( 𝑋  /   ∼  ) –1-1-onto→ [ 𝐴 ] 𝑂 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ran  ( 𝑘  ∈  𝑋  ↦  〈 [ 𝑘 ]  ∼  ,  ( 𝑘  ⊕  𝐴 ) 〉 ) : ( 𝑋  /   ∼  ) –1-1-onto→ [ 𝐴 ] 𝑂 ) | 
						
							| 18 | 14 17 | hasheqf1od | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ ( 𝑋  /   ∼  ) )  =  ( ♯ ‘ [ 𝐴 ] 𝑂 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  ·  ( ♯ ‘ 𝐻 ) )  =  ( ( ♯ ‘ [ 𝐴 ] 𝑂 )  ·  ( ♯ ‘ 𝐻 ) ) ) | 
						
							| 20 | 8 19 | eqtrd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ [ 𝐴 ] 𝑂 )  ·  ( ♯ ‘ 𝐻 ) ) ) |