Metamath Proof Explorer


Theorem orbstafun

Description: Existence and uniqueness for the function of orbsta . (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses gasta.1 𝑋 = ( Base ‘ 𝐺 )
gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
orbsta.r = ( 𝐺 ~QG 𝐻 )
orbsta.f 𝐹 = ran ( 𝑘𝑋 ↦ ⟨ [ 𝑘 ] , ( 𝑘 𝐴 ) ⟩ )
Assertion orbstafun ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 gasta.1 𝑋 = ( Base ‘ 𝐺 )
2 gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
3 orbsta.r = ( 𝐺 ~QG 𝐻 )
4 orbsta.f 𝐹 = ran ( 𝑘𝑋 ↦ ⟨ [ 𝑘 ] , ( 𝑘 𝐴 ) ⟩ )
5 ovexd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → ( 𝑘 𝐴 ) ∈ V )
6 1 2 gastacl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
7 1 3 eqger ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝑋 )
8 6 7 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Er 𝑋 )
9 1 fvexi 𝑋 ∈ V
10 9 a1i ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝑋 ∈ V )
11 oveq1 ( 𝑘 = → ( 𝑘 𝐴 ) = ( 𝐴 ) )
12 simpr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → 𝑘 )
13 subgrcl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
14 1 subgss ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻𝑋 )
15 eqid ( invg𝐺 ) = ( invg𝐺 )
16 eqid ( +g𝐺 ) = ( +g𝐺 )
17 1 15 16 3 eqgval ( ( 𝐺 ∈ Grp ∧ 𝐻𝑋 ) → ( 𝑘 ↔ ( 𝑘𝑋𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑘 ) ( +g𝐺 ) ) ∈ 𝐻 ) ) )
18 13 14 17 syl2anc ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑘 ↔ ( 𝑘𝑋𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑘 ) ( +g𝐺 ) ) ∈ 𝐻 ) ) )
19 6 18 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( 𝑘 ↔ ( 𝑘𝑋𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑘 ) ( +g𝐺 ) ) ∈ 𝐻 ) ) )
20 19 biimpa ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → ( 𝑘𝑋𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑘 ) ( +g𝐺 ) ) ∈ 𝐻 ) )
21 20 simp1d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → 𝑘𝑋 )
22 20 simp2d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → 𝑋 )
23 21 22 jca ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → ( 𝑘𝑋𝑋 ) )
24 1 2 3 gastacos ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑘𝑋𝑋 ) ) → ( 𝑘 ↔ ( 𝑘 𝐴 ) = ( 𝐴 ) ) )
25 23 24 syldan ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → ( 𝑘 ↔ ( 𝑘 𝐴 ) = ( 𝐴 ) ) )
26 12 25 mpbid ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘 ) → ( 𝑘 𝐴 ) = ( 𝐴 ) )
27 4 5 8 10 11 26 qliftfund ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Fun 𝐹 )