Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gasta.2 |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } |
3 |
|
orbsta.r |
⊢ ∼ = ( 𝐺 ~QG 𝐻 ) |
4 |
|
orbsta.f |
⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) |
5 |
|
ovexd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ V ) |
6 |
1 2
|
gastacl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
1 3
|
eqger |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
8 |
6 7
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∼ Er 𝑋 ) |
9 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
10 |
9
|
a1i |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑋 ∈ V ) |
11 |
|
oveq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) |
12 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → 𝑘 ∼ ℎ ) |
13 |
|
subgrcl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
14 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
15 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
17 |
1 15 16 3
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋 ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) ) |
18 |
13 14 17
|
syl2anc |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) ) |
19 |
6 18
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) |
21 |
20
|
simp1d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → 𝑘 ∈ 𝑋 ) |
22 |
20
|
simp2d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ℎ ∈ 𝑋 ) |
23 |
21 22
|
jca |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ) ) |
24 |
1 2 3
|
gastacos |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ) ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) ) |
25 |
23 24
|
syldan |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) ) |
26 |
12 25
|
mpbid |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) |
27 |
4 5 8 10 11 26
|
qliftfund |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |