Metamath Proof Explorer


Theorem orbstaval

Description: Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses gasta.1 𝑋 = ( Base ‘ 𝐺 )
gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
orbsta.r = ( 𝐺 ~QG 𝐻 )
orbsta.f 𝐹 = ran ( 𝑘𝑋 ↦ ⟨ [ 𝑘 ] , ( 𝑘 𝐴 ) ⟩ )
Assertion orbstaval ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝐵𝑋 ) → ( 𝐹 ‘ [ 𝐵 ] ) = ( 𝐵 𝐴 ) )

Proof

Step Hyp Ref Expression
1 gasta.1 𝑋 = ( Base ‘ 𝐺 )
2 gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
3 orbsta.r = ( 𝐺 ~QG 𝐻 )
4 orbsta.f 𝐹 = ran ( 𝑘𝑋 ↦ ⟨ [ 𝑘 ] , ( 𝑘 𝐴 ) ⟩ )
5 ovexd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑘𝑋 ) → ( 𝑘 𝐴 ) ∈ V )
6 1 2 gastacl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
7 1 3 eqger ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → Er 𝑋 )
8 6 7 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Er 𝑋 )
9 1 fvexi 𝑋 ∈ V
10 9 a1i ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝑋 ∈ V )
11 oveq1 ( 𝑘 = 𝐵 → ( 𝑘 𝐴 ) = ( 𝐵 𝐴 ) )
12 1 2 3 4 orbstafun ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → Fun 𝐹 )
13 4 5 8 10 11 12 qliftval ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝐵𝑋 ) → ( 𝐹 ‘ [ 𝐵 ] ) = ( 𝐵 𝐴 ) )