| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gasta.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gasta.2 | ⊢ 𝐻  =  { 𝑢  ∈  𝑋  ∣  ( 𝑢  ⊕  𝐴 )  =  𝐴 } | 
						
							| 3 |  | orbsta.r | ⊢  ∼   =  ( 𝐺  ~QG  𝐻 ) | 
						
							| 4 |  | orbsta.f | ⊢ 𝐹  =  ran  ( 𝑘  ∈  𝑋  ↦  〈 [ 𝑘 ]  ∼  ,  ( 𝑘  ⊕  𝐴 ) 〉 ) | 
						
							| 5 |  | ovexd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝑘  ⊕  𝐴 )  ∈  V ) | 
						
							| 6 | 1 2 | gastacl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 7 | 1 3 | eqger | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →   ∼   Er  𝑋 ) | 
						
							| 9 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  𝑋  ∈  V ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑘  =  𝐵  →  ( 𝑘  ⊕  𝐴 )  =  ( 𝐵  ⊕  𝐴 ) ) | 
						
							| 12 | 1 2 3 4 | orbstafun | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  →  Fun  𝐹 ) | 
						
							| 13 | 4 5 8 10 11 12 | qliftval | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑌 )  ∧  𝐵  ∈  𝑋 )  →  ( 𝐹 ‘ [ 𝐵 ]  ∼  )  =  ( 𝐵  ⊕  𝐴 ) ) |