Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gasta.2 |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } |
3 |
|
orbsta.r |
⊢ ∼ = ( 𝐺 ~QG 𝐻 ) |
4 |
|
orbsta.f |
⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) |
5 |
|
ovexd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ V ) |
6 |
1 2
|
gastacl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
1 3
|
eqger |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
8 |
6 7
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∼ Er 𝑋 ) |
9 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
10 |
9
|
a1i |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑋 ∈ V ) |
11 |
|
oveq1 |
⊢ ( 𝑘 = 𝐵 → ( 𝑘 ⊕ 𝐴 ) = ( 𝐵 ⊕ 𝐴 ) ) |
12 |
1 2 3 4
|
orbstafun |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |
13 |
4 5 8 10 11 12
|
qliftval |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝐵 ] ∼ ) = ( 𝐵 ⊕ 𝐴 ) ) |