Description: Commutative law for disjunction. Theorem *4.31 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 15-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | orcom | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜓 ∨ 𝜑 ) ) | |
2 | pm1.4 | ⊢ ( ( 𝜓 ∨ 𝜑 ) → ( 𝜑 ∨ 𝜓 ) ) | |
3 | 1 2 | impbii | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜑 ) ) |