Description: A nonempty ordinal contains the empty set. Lemma 1.10 of Schloeder p. 2. (Contributed by NM, 25-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ord0eln0 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 2 | ord0 | ⊢ Ord ∅ | |
| 3 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | ordtri2 | ⊢ ( ( Ord 𝐴 ∧ Ord ∅ ) → ( 𝐴 ∈ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) ) | |
| 5 | 4 | con2bid | ⊢ ( ( Ord 𝐴 ∧ Ord ∅ ) → ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ ∅ ) ) |
| 6 | 3 5 | mpbiri | ⊢ ( ( Ord 𝐴 ∧ Ord ∅ ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
| 7 | 2 6 | mpan2 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
| 8 | neor | ⊢ ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ≠ ∅ → ∅ ∈ 𝐴 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( Ord 𝐴 → ( 𝐴 ≠ ∅ → ∅ ∈ 𝐴 ) ) |
| 10 | 1 9 | impbid2 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |