Metamath Proof Explorer


Theorem ord0eln0

Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995)

Ref Expression
Assertion ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 ne0i ( ∅ ∈ 𝐴𝐴 ≠ ∅ )
2 ord0 Ord ∅
3 noel ¬ 𝐴 ∈ ∅
4 ordtri2 ( ( Ord 𝐴 ∧ Ord ∅ ) → ( 𝐴 ∈ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) )
5 4 con2bid ( ( Ord 𝐴 ∧ Ord ∅ ) → ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ ∅ ) )
6 3 5 mpbiri ( ( Ord 𝐴 ∧ Ord ∅ ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
7 2 6 mpan2 ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) )
8 neor ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ≠ ∅ → ∅ ∈ 𝐴 ) )
9 7 8 sylib ( Ord 𝐴 → ( 𝐴 ≠ ∅ → ∅ ∈ 𝐴 ) )
10 1 9 impbid2 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )