Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | ord0eln0 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | ⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
2 | ord0 | ⊢ Ord ∅ | |
3 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
4 | ordtri2 | ⊢ ( ( Ord 𝐴 ∧ Ord ∅ ) → ( 𝐴 ∈ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) ) | |
5 | 4 | con2bid | ⊢ ( ( Ord 𝐴 ∧ Ord ∅ ) → ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ ∅ ) ) |
6 | 3 5 | mpbiri | ⊢ ( ( Ord 𝐴 ∧ Ord ∅ ) → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
7 | 2 6 | mpan2 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ) |
8 | neor | ⊢ ( ( 𝐴 = ∅ ∨ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ≠ ∅ → ∅ ∈ 𝐴 ) ) | |
9 | 7 8 | sylib | ⊢ ( Ord 𝐴 → ( 𝐴 ≠ ∅ → ∅ ∈ 𝐴 ) ) |
10 | 1 9 | impbid2 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |