Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
⊢ ( 1o ∈ 𝐴 → 𝐴 ≠ ∅ ) |
2 |
|
1on |
⊢ 1o ∈ On |
3 |
2
|
onirri |
⊢ ¬ 1o ∈ 1o |
4 |
|
eleq2 |
⊢ ( 𝐴 = 1o → ( 1o ∈ 𝐴 ↔ 1o ∈ 1o ) ) |
5 |
3 4
|
mtbiri |
⊢ ( 𝐴 = 1o → ¬ 1o ∈ 𝐴 ) |
6 |
5
|
necon2ai |
⊢ ( 1o ∈ 𝐴 → 𝐴 ≠ 1o ) |
7 |
1 6
|
jca |
⊢ ( 1o ∈ 𝐴 → ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) |
8 |
|
el1o |
⊢ ( 𝐴 ∈ 1o ↔ 𝐴 = ∅ ) |
9 |
8
|
biimpi |
⊢ ( 𝐴 ∈ 1o → 𝐴 = ∅ ) |
10 |
9
|
necon3ai |
⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o ) |
11 |
|
nesym |
⊢ ( 𝐴 ≠ 1o ↔ ¬ 1o = 𝐴 ) |
12 |
11
|
biimpi |
⊢ ( 𝐴 ≠ 1o → ¬ 1o = 𝐴 ) |
13 |
10 12
|
anim12ci |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → ( ¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o ) ) |
14 |
|
pm4.56 |
⊢ ( ( ¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o ) ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) |
16 |
2
|
onordi |
⊢ Ord 1o |
17 |
|
ordtri2 |
⊢ ( ( Ord 1o ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) ) |
18 |
16 17
|
mpan |
⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) ) |
19 |
15 18
|
imbitrrid |
⊢ ( Ord 𝐴 → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → 1o ∈ 𝐴 ) ) |
20 |
7 19
|
impbid2 |
⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) ) |