| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ne0i |
⊢ ( 1o ∈ 𝐴 → 𝐴 ≠ ∅ ) |
| 2 |
|
1on |
⊢ 1o ∈ On |
| 3 |
2
|
onirri |
⊢ ¬ 1o ∈ 1o |
| 4 |
|
eleq2 |
⊢ ( 𝐴 = 1o → ( 1o ∈ 𝐴 ↔ 1o ∈ 1o ) ) |
| 5 |
3 4
|
mtbiri |
⊢ ( 𝐴 = 1o → ¬ 1o ∈ 𝐴 ) |
| 6 |
5
|
necon2ai |
⊢ ( 1o ∈ 𝐴 → 𝐴 ≠ 1o ) |
| 7 |
1 6
|
jca |
⊢ ( 1o ∈ 𝐴 → ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) |
| 8 |
|
el1o |
⊢ ( 𝐴 ∈ 1o ↔ 𝐴 = ∅ ) |
| 9 |
8
|
biimpi |
⊢ ( 𝐴 ∈ 1o → 𝐴 = ∅ ) |
| 10 |
9
|
necon3ai |
⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o ) |
| 11 |
|
nesym |
⊢ ( 𝐴 ≠ 1o ↔ ¬ 1o = 𝐴 ) |
| 12 |
11
|
biimpi |
⊢ ( 𝐴 ≠ 1o → ¬ 1o = 𝐴 ) |
| 13 |
10 12
|
anim12ci |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → ( ¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o ) ) |
| 14 |
|
pm4.56 |
⊢ ( ( ¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o ) ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) |
| 15 |
13 14
|
sylib |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) |
| 16 |
2
|
onordi |
⊢ Ord 1o |
| 17 |
|
ordtri2 |
⊢ ( ( Ord 1o ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) ) |
| 18 |
16 17
|
mpan |
⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) ) |
| 19 |
15 18
|
imbitrrid |
⊢ ( Ord 𝐴 → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → 1o ∈ 𝐴 ) ) |
| 20 |
7 19
|
impbid2 |
⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) ) |