Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | orddi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordir | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜃 ) ) ∧ ( 𝜓 ∨ ( 𝜒 ∧ 𝜃 ) ) ) ) | |
2 | ordi | ⊢ ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ) | |
3 | ordi | ⊢ ( ( 𝜓 ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) | |
4 | 2 3 | anbi12i | ⊢ ( ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜃 ) ) ∧ ( 𝜓 ∨ ( 𝜒 ∧ 𝜃 ) ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) ) |
5 | 1 4 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) ) |