Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orddi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordir | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜃 ) ) ∧ ( 𝜓 ∨ ( 𝜒 ∧ 𝜃 ) ) ) ) | |
| 2 | ordi | ⊢ ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ) | |
| 3 | ordi | ⊢ ( ( 𝜓 ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( ( 𝜑 ∨ ( 𝜒 ∧ 𝜃 ) ) ∧ ( 𝜓 ∨ ( 𝜒 ∧ 𝜃 ) ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) ) |
| 5 | 1 4 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜃 ) ) ∧ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) ) |