Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | orddif | ⊢ ( Ord 𝐴 → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orddisj | ⊢ ( Ord 𝐴 → ( 𝐴 ∩ { 𝐴 } ) = ∅ ) | |
2 | disj3 | ⊢ ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ { 𝐴 } ) ) | |
3 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
4 | 3 | difeq1i | ⊢ ( suc 𝐴 ∖ { 𝐴 } ) = ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) |
5 | difun2 | ⊢ ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = ( 𝐴 ∖ { 𝐴 } ) | |
6 | 4 5 | eqtri | ⊢ ( suc 𝐴 ∖ { 𝐴 } ) = ( 𝐴 ∖ { 𝐴 } ) |
7 | 6 | eqeq2i | ⊢ ( 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ↔ 𝐴 = ( 𝐴 ∖ { 𝐴 } ) ) |
8 | 2 7 | bitr4i | ⊢ ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) |
9 | 1 8 | sylib | ⊢ ( Ord 𝐴 → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) |