| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onprc |
⊢ ¬ On ∈ V |
| 2 |
|
elex |
⊢ ( On ∈ 𝐴 → On ∈ V ) |
| 3 |
1 2
|
mto |
⊢ ¬ On ∈ 𝐴 |
| 4 |
|
ordon |
⊢ Ord On |
| 5 |
|
ordtri3or |
⊢ ( ( Ord 𝐴 ∧ Ord On ) → ( 𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴 ) ) |
| 6 |
4 5
|
mpan2 |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴 ) ) |
| 7 |
|
df-3or |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ∨ On ∈ 𝐴 ) ↔ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) ∨ On ∈ 𝐴 ) ) |
| 8 |
6 7
|
sylib |
⊢ ( Ord 𝐴 → ( ( 𝐴 ∈ On ∨ 𝐴 = On ) ∨ On ∈ 𝐴 ) ) |
| 9 |
8
|
ord |
⊢ ( Ord 𝐴 → ( ¬ ( 𝐴 ∈ On ∨ 𝐴 = On ) → On ∈ 𝐴 ) ) |
| 10 |
3 9
|
mt3i |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
| 11 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 12 |
|
ordeq |
⊢ ( 𝐴 = On → ( Ord 𝐴 ↔ Ord On ) ) |
| 13 |
4 12
|
mpbiri |
⊢ ( 𝐴 = On → Ord 𝐴 ) |
| 14 |
11 13
|
jaoi |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → Ord 𝐴 ) |
| 15 |
10 14
|
impbii |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |