Step |
Hyp |
Ref |
Expression |
1 |
|
ordtri2or3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
3 |
|
eleq1a |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) → 𝐴 ∈ 𝐶 ) ) |
4 |
|
eleq1a |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐵 = ( 𝐴 ∩ 𝐵 ) → 𝐵 ∈ 𝐶 ) ) |
5 |
3 4
|
orim12d |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
6 |
2 5
|
syl5com |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
7 |
|
ordin |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) |
8 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
9 |
|
ordtr2 |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
10 |
8 9
|
mpani |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
11 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
12 |
|
ordtr2 |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
13 |
11 12
|
mpani |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
14 |
10 13
|
jaod |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
15 |
7 14
|
stoic3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
16 |
6 15
|
impbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |