| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtri2or3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
| 3 |
|
eleq1a |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) → 𝐴 ∈ 𝐶 ) ) |
| 4 |
|
eleq1a |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐵 = ( 𝐴 ∩ 𝐵 ) → 𝐵 ∈ 𝐶 ) ) |
| 5 |
3 4
|
orim12d |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
| 6 |
2 5
|
syl5com |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
| 7 |
|
ordin |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) |
| 8 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 9 |
|
ordtr2 |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 10 |
8 9
|
mpani |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 11 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 12 |
|
ordtr2 |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 13 |
11 12
|
mpani |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 14 |
10 13
|
jaod |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 15 |
7 14
|
stoic3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 16 |
6 15
|
impbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |