| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 2 |
1
|
anbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ↔ ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) ) |
| 3 |
|
ordeq |
⊢ ( 𝑥 = 𝐵 → ( Ord 𝑥 ↔ Ord 𝐵 ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) ↔ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) ) ) |
| 5 |
|
simpll |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → Ord 𝐴 ) |
| 6 |
|
3anrot |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
| 7 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 8 |
6 7
|
bitr3i |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 9 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
| 10 |
|
trel3 |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 11 |
9 10
|
syl |
⊢ ( Ord 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 12 |
8 11
|
biimtrrid |
⊢ ( Ord 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 13 |
12
|
impl |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑧 ∈ 𝐴 ) |
| 14 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 15 |
9 14
|
syl |
⊢ ( Ord 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 16 |
15
|
expcomd |
⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
| 17 |
16
|
imp31 |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 18 |
17
|
adantrl |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) |
| 19 |
|
simplr |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 20 |
|
ordwe |
⊢ ( Ord 𝐴 → E We 𝐴 ) |
| 21 |
|
wetrep |
⊢ ( ( E We 𝐴 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 22 |
20 21
|
sylan |
⊢ ( ( Ord 𝐴 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 23 |
5 13 18 19 22
|
syl13anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 24 |
23
|
ex |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 25 |
24
|
pm2.43d |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 26 |
25
|
alrimivv |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 27 |
|
dftr2 |
⊢ ( Tr 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 28 |
26 27
|
sylibr |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Tr 𝑥 ) |
| 29 |
|
trss |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
| 30 |
9 29
|
syl |
⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
| 31 |
|
wess |
⊢ ( 𝑥 ⊆ 𝐴 → ( E We 𝐴 → E We 𝑥 ) ) |
| 32 |
30 20 31
|
syl6ci |
⊢ ( Ord 𝐴 → ( 𝑥 ∈ 𝐴 → E We 𝑥 ) ) |
| 33 |
32
|
imp |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → E We 𝑥 ) |
| 34 |
|
df-ord |
⊢ ( Ord 𝑥 ↔ ( Tr 𝑥 ∧ E We 𝑥 ) ) |
| 35 |
28 33 34
|
sylanbrc |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) |
| 36 |
4 35
|
vtoclg |
⊢ ( 𝐵 ∈ 𝐴 → ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) ) |
| 37 |
36
|
anabsi7 |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |