Metamath Proof Explorer


Theorem ordelord

Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. (Contributed by NM, 23-Apr-1994)

Ref Expression
Assertion ordelord ( ( Ord 𝐴𝐵𝐴 ) → Ord 𝐵 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐴𝐵𝐴 ) )
2 1 anbi2d ( 𝑥 = 𝐵 → ( ( Ord 𝐴𝑥𝐴 ) ↔ ( Ord 𝐴𝐵𝐴 ) ) )
3 ordeq ( 𝑥 = 𝐵 → ( Ord 𝑥 ↔ Ord 𝐵 ) )
4 2 3 imbi12d ( 𝑥 = 𝐵 → ( ( ( Ord 𝐴𝑥𝐴 ) → Ord 𝑥 ) ↔ ( ( Ord 𝐴𝐵𝐴 ) → Ord 𝐵 ) ) )
5 simpll ( ( ( Ord 𝐴𝑥𝐴 ) ∧ ( 𝑧𝑦𝑦𝑥 ) ) → Ord 𝐴 )
6 3anrot ( ( 𝑥𝐴𝑧𝑦𝑦𝑥 ) ↔ ( 𝑧𝑦𝑦𝑥𝑥𝐴 ) )
7 3anass ( ( 𝑥𝐴𝑧𝑦𝑦𝑥 ) ↔ ( 𝑥𝐴 ∧ ( 𝑧𝑦𝑦𝑥 ) ) )
8 6 7 bitr3i ( ( 𝑧𝑦𝑦𝑥𝑥𝐴 ) ↔ ( 𝑥𝐴 ∧ ( 𝑧𝑦𝑦𝑥 ) ) )
9 ordtr ( Ord 𝐴 → Tr 𝐴 )
10 trel3 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦𝑥𝑥𝐴 ) → 𝑧𝐴 ) )
11 9 10 syl ( Ord 𝐴 → ( ( 𝑧𝑦𝑦𝑥𝑥𝐴 ) → 𝑧𝐴 ) )
12 8 11 syl5bir ( Ord 𝐴 → ( ( 𝑥𝐴 ∧ ( 𝑧𝑦𝑦𝑥 ) ) → 𝑧𝐴 ) )
13 12 impl ( ( ( Ord 𝐴𝑥𝐴 ) ∧ ( 𝑧𝑦𝑦𝑥 ) ) → 𝑧𝐴 )
14 trel ( Tr 𝐴 → ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) )
15 9 14 syl ( Ord 𝐴 → ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) )
16 15 expcomd ( Ord 𝐴 → ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐴 ) ) )
17 16 imp31 ( ( ( Ord 𝐴𝑥𝐴 ) ∧ 𝑦𝑥 ) → 𝑦𝐴 )
18 17 adantrl ( ( ( Ord 𝐴𝑥𝐴 ) ∧ ( 𝑧𝑦𝑦𝑥 ) ) → 𝑦𝐴 )
19 simplr ( ( ( Ord 𝐴𝑥𝐴 ) ∧ ( 𝑧𝑦𝑦𝑥 ) ) → 𝑥𝐴 )
20 ordwe ( Ord 𝐴 → E We 𝐴 )
21 wetrep ( ( E We 𝐴 ∧ ( 𝑧𝐴𝑦𝐴𝑥𝐴 ) ) → ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
22 20 21 sylan ( ( Ord 𝐴 ∧ ( 𝑧𝐴𝑦𝐴𝑥𝐴 ) ) → ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
23 5 13 18 19 22 syl13anc ( ( ( Ord 𝐴𝑥𝐴 ) ∧ ( 𝑧𝑦𝑦𝑥 ) ) → ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
24 23 ex ( ( Ord 𝐴𝑥𝐴 ) → ( ( 𝑧𝑦𝑦𝑥 ) → ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) ) )
25 24 pm2.43d ( ( Ord 𝐴𝑥𝐴 ) → ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
26 25 alrimivv ( ( Ord 𝐴𝑥𝐴 ) → ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
27 dftr2 ( Tr 𝑥 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑥 ) )
28 26 27 sylibr ( ( Ord 𝐴𝑥𝐴 ) → Tr 𝑥 )
29 trss ( Tr 𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
30 9 29 syl ( Ord 𝐴 → ( 𝑥𝐴𝑥𝐴 ) )
31 wess ( 𝑥𝐴 → ( E We 𝐴 → E We 𝑥 ) )
32 30 20 31 syl6ci ( Ord 𝐴 → ( 𝑥𝐴 → E We 𝑥 ) )
33 32 imp ( ( Ord 𝐴𝑥𝐴 ) → E We 𝑥 )
34 df-ord ( Ord 𝑥 ↔ ( Tr 𝑥 ∧ E We 𝑥 ) )
35 28 33 34 sylanbrc ( ( Ord 𝐴𝑥𝐴 ) → Ord 𝑥 )
36 4 35 vtoclg ( 𝐵𝐴 → ( ( Ord 𝐴𝐵𝐴 ) → Ord 𝐵 ) )
37 36 anabsi7 ( ( Ord 𝐴𝐵𝐴 ) → Ord 𝐵 )