Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
2 |
1
|
adantr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐴 ) |
3 |
|
dford2 |
⊢ ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) ) |
4 |
3
|
simprbi |
⊢ ( Ord 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
5 |
4
|
adantr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
6 |
|
3orcomb |
⊢ ( ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
7 |
6
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
8 |
5 7
|
sylib |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
9 |
|
simpr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
10 |
|
tratrb |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐵 ) |
11 |
2 8 9 10
|
syl3anc |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Tr 𝐵 ) |
12 |
|
trss |
⊢ ( Tr 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) ) |
13 |
2 9 12
|
sylc |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
14 |
|
ssralv2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) ) |
15 |
14
|
ex |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) ) ) |
16 |
13 13 5 15
|
syl3c |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
17 |
|
dford2 |
⊢ ( Ord 𝐵 ↔ ( Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) ) |
18 |
11 16 17
|
sylanbrc |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |