| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtr | ⊢ ( Ord  𝐴  →  Tr  𝐴 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  Tr  𝐴 ) | 
						
							| 3 |  | dford2 | ⊢ ( Ord  𝐴  ↔  ( Tr  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( Ord  𝐴  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 6 |  | 3orcomb | ⊢ ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 7 | 6 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 8 | 5 7 | sylib | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  𝐴 ) | 
						
							| 10 |  | tratrb | ⊢ ( ( Tr  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 )  ∧  𝐵  ∈  𝐴 )  →  Tr  𝐵 ) | 
						
							| 11 | 2 8 9 10 | syl3anc | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  Tr  𝐵 ) | 
						
							| 12 |  | trss | ⊢ ( Tr  𝐴  →  ( 𝐵  ∈  𝐴  →  𝐵  ⊆  𝐴 ) ) | 
						
							| 13 | 2 9 12 | sylc | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 14 |  | ssralv2 | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝐵  ⊆  𝐴  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 16 | 13 13 5 15 | syl3c | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 17 |  | dford2 | ⊢ ( Ord  𝐵  ↔  ( Tr  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 18 | 11 16 17 | sylanbrc | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  Ord  𝐵 ) |