| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ) | 
						
							| 2 |  | simpl | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  Ord  𝐴 ) | 
						
							| 3 | 1 2 | e1a | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    Ord  𝐴    ) | 
						
							| 4 |  | ordtr | ⊢ ( Ord  𝐴  →  Tr  𝐴 ) | 
						
							| 5 | 3 4 | e1a | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    Tr  𝐴    ) | 
						
							| 6 |  | dford2 | ⊢ ( Ord  𝐴  ↔  ( Tr  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( Ord  𝐴  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 8 | 3 7 | e1a | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )    ) | 
						
							| 9 |  | 3orcomb | ⊢ ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 10 | 9 | ax-gen | ⊢ ∀ 𝑦 ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 11 |  | alral | ⊢ ( ∀ 𝑦 ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) )  →  ∀ 𝑦  ∈  𝐴 ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 12 | 10 11 | e0a | ⊢ ∀ 𝑦  ∈  𝐴 ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 13 |  | ralbi | ⊢ ( ∀ 𝑦  ∈  𝐴 ( ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) )  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 14 | 12 13 | e0a | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 15 | 14 | ax-gen | ⊢ ∀ 𝑥 ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 16 |  | alral | ⊢ ( ∀ 𝑥 ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) )  →  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 17 | 15 16 | e0a | ⊢ ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 18 |  | ralbi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 19 | 17 18 | e0a | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 ) ) | 
						
							| 20 | 8 19 | e1bi | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 )    ) | 
						
							| 21 |  | simpr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  𝐴 ) | 
						
							| 22 | 1 21 | e1a | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    𝐵  ∈  𝐴    ) | 
						
							| 23 |  | tratrb | ⊢ ( ( Tr  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 )  ∧  𝐵  ∈  𝐴 )  →  Tr  𝐵 ) | 
						
							| 24 | 23 | 3exp | ⊢ ( Tr  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 )  →  ( 𝐵  ∈  𝐴  →  Tr  𝐵 ) ) ) | 
						
							| 25 | 5 20 22 24 | e111 | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    Tr  𝐵    ) | 
						
							| 26 |  | trss | ⊢ ( Tr  𝐴  →  ( 𝐵  ∈  𝐴  →  𝐵  ⊆  𝐴 ) ) | 
						
							| 27 | 5 22 26 | e11 | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    𝐵  ⊆  𝐴    ) | 
						
							| 28 |  | ssralv2 | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( 𝐵  ⊆  𝐴  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 30 | 27 27 8 29 | e111 | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )    ) | 
						
							| 31 |  | dford2 | ⊢ ( Ord  𝐵  ↔  ( Tr  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 32 | 31 | simplbi2 | ⊢ ( Tr  𝐵  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 )  →  Ord  𝐵 ) ) | 
						
							| 33 | 25 30 32 | e11 | ⊢ (    ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )    ▶    Ord  𝐵    ) | 
						
							| 34 | 33 | in1 | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  Ord  𝐵 ) |