Metamath Proof Explorer
Description: For ordinal classes, membership is equivalent to strict inclusion.
Corollary 7.8 of TakeutiZaring p. 37. (Contributed by NM, 17-Jun-1998)
|
|
Ref |
Expression |
|
Assertion |
ordelpss |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ordelssne |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
2 |
|
df-pss |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
3 |
1 2
|
bitr4di |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |