Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ordelss | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
2 | trss | ⊢ ( Tr 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) ) | |
3 | 2 | imp | ⊢ ( ( Tr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
4 | 1 3 | sylan | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |