Metamath Proof Explorer


Theorem ordelss

Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994)

Ref Expression
Assertion ordelss ( ( Ord 𝐴𝐵𝐴 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝐴 → Tr 𝐴 )
2 trss ( Tr 𝐴 → ( 𝐵𝐴𝐵𝐴 ) )
3 2 imp ( ( Tr 𝐴𝐵𝐴 ) → 𝐵𝐴 )
4 1 3 sylan ( ( Ord 𝐴𝐵𝐴 ) → 𝐵𝐴 )