Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelss | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 2 | trss | ⊢ ( Tr 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) ) | |
| 3 | 2 | imp | ⊢ ( ( Tr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | 
| 4 | 1 3 | sylan | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |