Metamath Proof Explorer


Theorem ordelssne

Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of TakeutiZaring p. 37. (Contributed by NM, 25-Nov-1995)

Ref Expression
Assertion ordelssne ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝐴 → Tr 𝐴 )
2 tz7.7 ( ( Ord 𝐵 ∧ Tr 𝐴 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )
3 1 2 sylan2 ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )
4 3 ancoms ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) ) )