Metamath Proof Explorer
Description: For ordinal classes, membership is equivalent to strict inclusion.
Corollary 7.8 of TakeutiZaring p. 37. (Contributed by NM, 25-Nov-1995)
|
|
Ref |
Expression |
|
Assertion |
ordelssne |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
2 |
|
tz7.7 |
⊢ ( ( Ord 𝐵 ∧ Tr 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
4 |
3
|
ancoms |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |