Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 29-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ordelsuc | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucss | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) | |
2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
3 | sucssel | ⊢ ( 𝐴 ∈ 𝐶 → ( suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) ) | |
4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
5 | 2 4 | impbid | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) ) |