Metamath Proof Explorer


Theorem ordelsuc

Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 29-Nov-2003)

Ref Expression
Assertion ordelsuc ( ( 𝐴𝐶 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ suc 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ordsucss ( Ord 𝐵 → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
2 1 adantl ( ( 𝐴𝐶 ∧ Ord 𝐵 ) → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
3 sucssel ( 𝐴𝐶 → ( suc 𝐴𝐵𝐴𝐵 ) )
4 3 adantr ( ( 𝐴𝐶 ∧ Ord 𝐵 ) → ( suc 𝐴𝐵𝐴𝐵 ) )
5 2 4 impbid ( ( 𝐴𝐶 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ suc 𝐴𝐵 ) )