Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordeq | ⊢ ( 𝐴 = 𝐵 → ( Ord 𝐴 ↔ Ord 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq | ⊢ ( 𝐴 = 𝐵 → ( Tr 𝐴 ↔ Tr 𝐵 ) ) | |
| 2 | weeq2 | ⊢ ( 𝐴 = 𝐵 → ( E We 𝐴 ↔ E We 𝐵 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( Tr 𝐴 ∧ E We 𝐴 ) ↔ ( Tr 𝐵 ∧ E We 𝐵 ) ) ) |
| 4 | df-ord | ⊢ ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) ) | |
| 5 | df-ord | ⊢ ( Ord 𝐵 ↔ ( Tr 𝐵 ∧ E We 𝐵 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( Ord 𝐴 ↔ Ord 𝐵 ) ) |