Step |
Hyp |
Ref |
Expression |
1 |
|
ordtri2or2 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |
2 |
1
|
orcomd |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ) |
3 |
|
ssequn2 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐵 ) |
4 |
|
eqeq1 |
⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐵 ) ) |
5 |
3 4
|
bitr4id |
⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝐶 ⊆ 𝐵 ↔ 𝐴 = 𝐵 ) ) |
6 |
|
ssequn1 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) |
7 |
|
eqeq1 |
⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝐴 = 𝐶 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) |
8 |
6 7
|
bitr4id |
⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝐵 ⊆ 𝐶 ↔ 𝐴 = 𝐶 ) ) |
9 |
5 8
|
orbi12d |
⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ( 𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
10 |
2 9
|
syl5ibcom |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |