Metamath Proof Explorer


Theorem ordequn

Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of TakeutiZaring p. 40. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordequn ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 = ( 𝐵𝐶 ) → ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ordtri2or2 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵𝐶𝐶𝐵 ) )
2 1 orcomd ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐶𝐵𝐵𝐶 ) )
3 ssequn2 ( 𝐶𝐵 ↔ ( 𝐵𝐶 ) = 𝐵 )
4 eqeq1 ( 𝐴 = ( 𝐵𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐵𝐶 ) = 𝐵 ) )
5 3 4 bitr4id ( 𝐴 = ( 𝐵𝐶 ) → ( 𝐶𝐵𝐴 = 𝐵 ) )
6 ssequn1 ( 𝐵𝐶 ↔ ( 𝐵𝐶 ) = 𝐶 )
7 eqeq1 ( 𝐴 = ( 𝐵𝐶 ) → ( 𝐴 = 𝐶 ↔ ( 𝐵𝐶 ) = 𝐶 ) )
8 6 7 bitr4id ( 𝐴 = ( 𝐵𝐶 ) → ( 𝐵𝐶𝐴 = 𝐶 ) )
9 5 8 orbi12d ( 𝐴 = ( 𝐵𝐶 ) → ( ( 𝐶𝐵𝐵𝐶 ) ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
10 2 9 syl5ibcom ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 = ( 𝐵𝐶 ) → ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )