Metamath Proof Explorer


Theorem ordge1n0

Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion ordge1n0 ( Ord 𝐴 → ( 1o𝐴𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 ordgt0ge1 ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o𝐴 ) )
2 ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
3 1 2 bitr3d ( Ord 𝐴 → ( 1o𝐴𝐴 ≠ ∅ ) )