Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordgt0ge1 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | ⊢ ∅ ∈ On | |
| 2 | ordelsuc | ⊢ ( ( ∅ ∈ On ∧ Ord 𝐴 ) → ( ∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴 ) ) |
| 4 | df-1o | ⊢ 1o = suc ∅ | |
| 5 | 4 | sseq1i | ⊢ ( 1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴 ) |
| 6 | 3 5 | bitr4di | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |