Metamath Proof Explorer


Theorem ordi

Description: Distributive law for disjunction. Theorem *4.41 of WhiteheadRussell p. 119. (Contributed by NM, 5-Jan-1993) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 28-Nov-2013)

Ref Expression
Assertion ordi ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 jcab ( ( ¬ 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )
2 df-or ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ¬ 𝜑 → ( 𝜓𝜒 ) ) )
3 df-or ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
4 df-or ( ( 𝜑𝜒 ) ↔ ( ¬ 𝜑𝜒 ) )
5 3 4 anbi12i ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) )
6 1 2 5 3bitr4i ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )