Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of TakeutiZaring p. 37. (Contributed by NM, 9-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ordin | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
2 | ordtr | ⊢ ( Ord 𝐵 → Tr 𝐵 ) | |
3 | trin | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴 ∩ 𝐵 ) ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Tr ( 𝐴 ∩ 𝐵 ) ) |
5 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
6 | trssord | ⊢ ( ( Tr ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) | |
7 | 5 6 | mp3an2 | ⊢ ( ( Tr ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) |
8 | 4 7 | sylancom | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) |