Step |
Hyp |
Ref |
Expression |
1 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) = ∅ ) |
2 |
1
|
necon3bbii |
⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) |
3 |
|
dfdif2 |
⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } |
4 |
3
|
inteqi |
⊢ ∩ ( 𝐴 ∖ 𝐵 ) = ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } |
5 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
6 |
5
|
con2bid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵 ) ) |
7 |
|
id |
⊢ ( Ord 𝐵 → Ord 𝐵 ) |
8 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → Ord 𝑥 ) |
9 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝑥 ) → ( 𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵 ) ) |
10 |
7 8 9
|
syl2anr |
⊢ ( ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ Ord 𝐵 ) → ( 𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵 ) ) |
11 |
10
|
an32s |
⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵 ) ) |
12 |
11
|
rabbidva |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥 } = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } ) |
13 |
12
|
inteqd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥 } = ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } ) |
14 |
|
intmin |
⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥 } = 𝐵 ) |
15 |
13 14
|
sylan9req |
⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝐵 ∈ 𝐴 ) → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) |
16 |
15
|
ex |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) ) |
17 |
6 16
|
sylbird |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐴 ⊆ 𝐵 → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) ) |
18 |
17
|
3impia |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = 𝐵 ) |
19 |
4 18
|
eqtr2id |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵 ) → 𝐵 = ∩ ( 𝐴 ∖ 𝐵 ) ) |
20 |
2 19
|
syl3an3br |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → 𝐵 = ∩ ( 𝐴 ∖ 𝐵 ) ) |