Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordir | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordi | ⊢ ( ( 𝜒 ∨ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝜒 ∨ 𝜑 ) ∧ ( 𝜒 ∨ 𝜓 ) ) ) | |
| 2 | orcom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜒 ∨ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 3 | orcom | ⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜒 ∨ 𝜑 ) ) | |
| 4 | orcom | ⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ( 𝜒 ∨ 𝜓 ) ) | |
| 5 | 3 4 | anbi12i | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜒 ∨ 𝜑 ) ∧ ( 𝜒 ∨ 𝜓 ) ) ) |
| 6 | 1 2 5 | 3bitr4i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |