Step |
Hyp |
Ref |
Expression |
1 |
|
resiexg |
⊢ ( 𝐴 ∈ On → ( I ↾ 𝐴 ) ∈ V ) |
2 |
|
isoid |
⊢ ( I ↾ 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) |
3 |
|
isoeq1 |
⊢ ( 𝑓 = ( I ↾ 𝐴 ) → ( 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ↔ ( I ↾ 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) ) ) |
4 |
3
|
spcegv |
⊢ ( ( I ↾ 𝐴 ) ∈ V → ( ( I ↾ 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ) ) |
5 |
1 2 4
|
mpisyl |
⊢ ( 𝐴 ∈ On → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ) |
7 |
|
isoeq5 |
⊢ ( 𝐴 = 𝐵 → ( 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ↔ 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
8 |
7
|
exbidv |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ↔ ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
9 |
6 8
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
10 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
11 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
12 |
|
ordiso2 |
⊢ ( ( 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 = 𝐵 ) |
13 |
12
|
3coml |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) → 𝐴 = 𝐵 ) |
14 |
13
|
3expia |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑓 Isom E , E ( 𝐴 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
15 |
10 11 14
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑓 Isom E , E ( 𝐴 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
16 |
15
|
exlimdv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
17 |
9 16
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 ↔ ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |