Metamath Proof Explorer


Theorem ordiso2

Description: Generalize ordiso to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ordiso2 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 ordsson ( Ord 𝐴𝐴 ⊆ On )
2 1 3ad2ant2 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 ⊆ On )
3 2 sseld ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴𝑥 ∈ On ) )
4 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
5 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
6 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
7 5 6 eqeq12d ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑦 ) = 𝑦 ) )
8 4 7 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ↔ ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) )
9 8 imbi2d ( 𝑥 = 𝑦 → ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ) ↔ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) ) )
10 r19.21v ( ∀ 𝑦𝑥 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) ↔ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) )
11 ordelss ( ( Ord 𝐴𝑥𝐴 ) → 𝑥𝐴 )
12 11 3ad2antl2 ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
13 12 sselda ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝑥 ) → 𝑦𝐴 )
14 pm5.5 ( 𝑦𝐴 → ( ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ↔ ( 𝐹𝑦 ) = 𝑦 ) )
15 13 14 syl ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝑥 ) → ( ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ↔ ( 𝐹𝑦 ) = 𝑦 ) )
16 15 ralbidva ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ↔ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) )
17 isof1o ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴1-1-onto𝐵 )
18 17 3ad2ant1 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐹 : 𝐴1-1-onto𝐵 )
19 18 ad2antrr ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝐹 : 𝐴1-1-onto𝐵 )
20 simpll3 ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → Ord 𝐵 )
21 simpr ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝑧 ∈ ( 𝐹𝑥 ) )
22 f1of ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )
23 17 22 syl ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴𝐵 )
24 23 3ad2ant1 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐹 : 𝐴𝐵 )
25 24 ad2antrr ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝐹 : 𝐴𝐵 )
26 simplrl ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝑥𝐴 )
27 25 26 ffvelrnd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ 𝐵 )
28 21 27 jca ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝑧 ∈ ( 𝐹𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) )
29 ordtr1 ( Ord 𝐵 → ( ( 𝑧 ∈ ( 𝐹𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) → 𝑧𝐵 ) )
30 20 28 29 sylc ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝑧𝐵 )
31 f1ocnvfv2 ( ( 𝐹 : 𝐴1-1-onto𝐵𝑧𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = 𝑧 )
32 19 30 31 syl2anc ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = 𝑧 )
33 32 21 eqeltrd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) ∈ ( 𝐹𝑥 ) )
34 simpll1 ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) )
35 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
36 f1of ( 𝐹 : 𝐵1-1-onto𝐴 𝐹 : 𝐵𝐴 )
37 19 35 36 3syl ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝐹 : 𝐵𝐴 )
38 37 30 ffvelrnd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝐹𝑧 ) ∈ 𝐴 )
39 isorel ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( ( 𝐹𝑧 ) ∈ 𝐴𝑥𝐴 ) ) → ( ( 𝐹𝑧 ) E 𝑥 ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) E ( 𝐹𝑥 ) ) )
40 34 38 26 39 syl12anc ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( ( 𝐹𝑧 ) E 𝑥 ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) E ( 𝐹𝑥 ) ) )
41 epel ( ( 𝐹𝑧 ) E 𝑥 ↔ ( 𝐹𝑧 ) ∈ 𝑥 )
42 fvex ( 𝐹𝑥 ) ∈ V
43 42 epeli ( ( 𝐹 ‘ ( 𝐹𝑧 ) ) E ( 𝐹𝑥 ) ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) ∈ ( 𝐹𝑥 ) )
44 40 41 43 3bitr3g ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( ( 𝐹𝑧 ) ∈ 𝑥 ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) ∈ ( 𝐹𝑥 ) ) )
45 33 44 mpbird ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝐹𝑧 ) ∈ 𝑥 )
46 simplrr ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 )
47 fveq2 ( 𝑦 = ( 𝐹𝑧 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐹𝑧 ) ) )
48 id ( 𝑦 = ( 𝐹𝑧 ) → 𝑦 = ( 𝐹𝑧 ) )
49 47 48 eqeq12d ( 𝑦 = ( 𝐹𝑧 ) → ( ( 𝐹𝑦 ) = 𝑦 ↔ ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
50 49 rspcv ( ( 𝐹𝑧 ) ∈ 𝑥 → ( ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) ) )
51 45 46 50 sylc ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → ( 𝐹 ‘ ( 𝐹𝑧 ) ) = ( 𝐹𝑧 ) )
52 32 51 eqtr3d ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝑧 = ( 𝐹𝑧 ) )
53 52 45 eqeltrd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧 ∈ ( 𝐹𝑥 ) ) → 𝑧𝑥 )
54 simprr ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) → ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 )
55 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
56 id ( 𝑦 = 𝑧𝑦 = 𝑧 )
57 55 56 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐹𝑦 ) = 𝑦 ↔ ( 𝐹𝑧 ) = 𝑧 ) )
58 57 rspccva ( ( ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦𝑧𝑥 ) → ( 𝐹𝑧 ) = 𝑧 )
59 54 58 sylan ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → ( 𝐹𝑧 ) = 𝑧 )
60 epel ( 𝑧 E 𝑥𝑧𝑥 )
61 60 biimpri ( 𝑧𝑥𝑧 E 𝑥 )
62 61 adantl ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → 𝑧 E 𝑥 )
63 simpll1 ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) )
64 simpl2 ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) → Ord 𝐴 )
65 simprl ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) → 𝑥𝐴 )
66 64 65 11 syl2anc ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) → 𝑥𝐴 )
67 66 sselda ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → 𝑧𝐴 )
68 simplrl ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → 𝑥𝐴 )
69 isorel ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( 𝑧𝐴𝑥𝐴 ) ) → ( 𝑧 E 𝑥 ↔ ( 𝐹𝑧 ) E ( 𝐹𝑥 ) ) )
70 63 67 68 69 syl12anc ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → ( 𝑧 E 𝑥 ↔ ( 𝐹𝑧 ) E ( 𝐹𝑥 ) ) )
71 62 70 mpbid ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → ( 𝐹𝑧 ) E ( 𝐹𝑥 ) )
72 42 epeli ( ( 𝐹𝑧 ) E ( 𝐹𝑥 ) ↔ ( 𝐹𝑧 ) ∈ ( 𝐹𝑥 ) )
73 71 72 sylib ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → ( 𝐹𝑧 ) ∈ ( 𝐹𝑥 ) )
74 59 73 eqeltrrd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) ∧ 𝑧𝑥 ) → 𝑧 ∈ ( 𝐹𝑥 ) )
75 53 74 impbida ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) → ( 𝑧 ∈ ( 𝐹𝑥 ) ↔ 𝑧𝑥 ) )
76 75 eqrdv ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 ) ) → ( 𝐹𝑥 ) = 𝑥 )
77 76 expr ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝑥 ( 𝐹𝑦 ) = 𝑦 → ( 𝐹𝑥 ) = 𝑥 ) )
78 16 77 sylbid ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) → ( 𝐹𝑥 ) = 𝑥 ) )
79 78 ex ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) → ( 𝐹𝑥 ) = 𝑥 ) ) )
80 79 com23 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ) )
81 80 a2i ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ) )
82 81 a1i ( 𝑥 ∈ On → ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑦𝑥 ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ) ) )
83 10 82 syl5bi ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑦𝐴 → ( 𝐹𝑦 ) = 𝑦 ) ) → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ) ) )
84 9 83 tfis2 ( 𝑥 ∈ On → ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) ) )
85 84 com3l ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝑥 ∈ On → ( 𝐹𝑥 ) = 𝑥 ) ) )
86 3 85 mpdd ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) = 𝑥 ) )
87 86 ralrimiv ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 )
88 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
89 id ( 𝑥 = 𝑧𝑥 = 𝑧 )
90 88 89 eqeq12d ( 𝑥 = 𝑧 → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑧 ) = 𝑧 ) )
91 90 rspccva ( ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥𝑧𝐴 ) → ( 𝐹𝑧 ) = 𝑧 )
92 91 adantll ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) ∧ 𝑧𝐴 ) → ( 𝐹𝑧 ) = 𝑧 )
93 23 ffvelrnda ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ 𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
94 93 3ad2antl1 ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
95 94 adantlr ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) ∧ 𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
96 92 95 eqeltrrd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) ∧ 𝑧𝐴 ) → 𝑧𝐵 )
97 96 ex ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑧𝐴𝑧𝐵 ) )
98 simpl1 ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) )
99 f1ofo ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴onto𝐵 )
100 forn ( 𝐹 : 𝐴onto𝐵 → ran 𝐹 = 𝐵 )
101 17 99 100 3syl ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ran 𝐹 = 𝐵 )
102 98 101 syl ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ran 𝐹 = 𝐵 )
103 102 eleq2d ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑧 ∈ ran 𝐹𝑧𝐵 ) )
104 f1ofn ( 𝐹 : 𝐴1-1-onto𝐵𝐹 Fn 𝐴 )
105 17 104 syl ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 Fn 𝐴 )
106 105 3ad2ant1 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐹 Fn 𝐴 )
107 106 adantr ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → 𝐹 Fn 𝐴 )
108 fvelrnb ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝐴 ( 𝐹𝑤 ) = 𝑧 ) )
109 107 108 syl ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑤𝐴 ( 𝐹𝑤 ) = 𝑧 ) )
110 103 109 bitr3d ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑧𝐵 ↔ ∃ 𝑤𝐴 ( 𝐹𝑤 ) = 𝑧 ) )
111 fveq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
112 id ( 𝑥 = 𝑤𝑥 = 𝑤 )
113 111 112 eqeq12d ( 𝑥 = 𝑤 → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑤 ) = 𝑤 ) )
114 113 rspcv ( 𝑤𝐴 → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 → ( 𝐹𝑤 ) = 𝑤 ) )
115 114 a1i ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑤𝐴 → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 → ( 𝐹𝑤 ) = 𝑤 ) ) )
116 simpr ( ( ( 𝐹𝑤 ) = 𝑤 ∧ ( 𝐹𝑤 ) = 𝑧 ) → ( 𝐹𝑤 ) = 𝑧 )
117 simpl ( ( ( 𝐹𝑤 ) = 𝑤 ∧ ( 𝐹𝑤 ) = 𝑧 ) → ( 𝐹𝑤 ) = 𝑤 )
118 116 117 eqtr3d ( ( ( 𝐹𝑤 ) = 𝑤 ∧ ( 𝐹𝑤 ) = 𝑧 ) → 𝑧 = 𝑤 )
119 118 adantl ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑤𝐴 ) ∧ ( ( 𝐹𝑤 ) = 𝑤 ∧ ( 𝐹𝑤 ) = 𝑧 ) ) → 𝑧 = 𝑤 )
120 simplr ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑤𝐴 ) ∧ ( ( 𝐹𝑤 ) = 𝑤 ∧ ( 𝐹𝑤 ) = 𝑧 ) ) → 𝑤𝐴 )
121 119 120 eqeltrd ( ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ 𝑤𝐴 ) ∧ ( ( 𝐹𝑤 ) = 𝑤 ∧ ( 𝐹𝑤 ) = 𝑧 ) ) → 𝑧𝐴 )
122 121 exp43 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑤𝐴 → ( ( 𝐹𝑤 ) = 𝑤 → ( ( 𝐹𝑤 ) = 𝑧𝑧𝐴 ) ) ) )
123 115 122 syldd ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑤𝐴 → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 → ( ( 𝐹𝑤 ) = 𝑧𝑧𝐴 ) ) ) )
124 123 com23 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 → ( 𝑤𝐴 → ( ( 𝐹𝑤 ) = 𝑧𝑧𝐴 ) ) ) )
125 124 imp ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑤𝐴 → ( ( 𝐹𝑤 ) = 𝑧𝑧𝐴 ) ) )
126 125 rexlimdv ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( ∃ 𝑤𝐴 ( 𝐹𝑤 ) = 𝑧𝑧𝐴 ) )
127 110 126 sylbid ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑧𝐵𝑧𝐴 ) )
128 97 127 impbid ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑧𝐴𝑧𝐵 ) )
129 128 eqrdv ( ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = 𝑥 ) → 𝐴 = 𝐵 )
130 87 129 mpdan ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 = 𝐵 )