Metamath Proof Explorer


Theorem ordn2lp

Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of BellMachover p. 469. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordn2lp ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
2 ordtr ( Ord 𝐴 → Tr 𝐴 )
3 trel ( Tr 𝐴 → ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐴 ) )
4 2 3 syl ( Ord 𝐴 → ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐴 ) )
5 1 4 mtod ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵𝐴 ) )