Metamath Proof Explorer


Theorem ordnbtwn

Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of TakeutiZaring p. 41. (Contributed by NM, 21-Jun-1998) (Proof shortened by JJ, 24-Sep-2021)

Ref Expression
Assertion ordnbtwn ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
2 ordn2lp ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵𝐴 ) )
3 pm2.24 ( ( 𝐴𝐵𝐵𝐴 ) → ( ¬ ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐴 ) )
4 eleq2 ( 𝐵 = 𝐴 → ( 𝐴𝐵𝐴𝐴 ) )
5 4 biimpac ( ( 𝐴𝐵𝐵 = 𝐴 ) → 𝐴𝐴 )
6 5 a1d ( ( 𝐴𝐵𝐵 = 𝐴 ) → ( ¬ ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐴 ) )
7 3 6 jaodan ( ( 𝐴𝐵 ∧ ( 𝐵𝐴𝐵 = 𝐴 ) ) → ( ¬ ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐴 ) )
8 2 7 syl5com ( Ord 𝐴 → ( ( 𝐴𝐵 ∧ ( 𝐵𝐴𝐵 = 𝐴 ) ) → 𝐴𝐴 ) )
9 1 8 mtod ( Ord 𝐴 → ¬ ( 𝐴𝐵 ∧ ( 𝐵𝐴𝐵 = 𝐴 ) ) )
10 elsuci ( 𝐵 ∈ suc 𝐴 → ( 𝐵𝐴𝐵 = 𝐴 ) )
11 10 anim2i ( ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) → ( 𝐴𝐵 ∧ ( 𝐵𝐴𝐵 = 𝐴 ) ) )
12 9 11 nsyl ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )