| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
| 2 |
|
ordn2lp |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) |
| 3 |
|
pm2.24 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) |
| 4 |
|
eleq2 |
⊢ ( 𝐵 = 𝐴 → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴 ) ) |
| 5 |
4
|
biimpac |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴 ) → 𝐴 ∈ 𝐴 ) |
| 6 |
5
|
a1d |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴 ) → ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) |
| 7 |
3 6
|
jaodan |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) → ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) |
| 8 |
2 7
|
syl5com |
⊢ ( Ord 𝐴 → ( ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) → 𝐴 ∈ 𝐴 ) ) |
| 9 |
1 8
|
mtod |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 10 |
|
elsuci |
⊢ ( 𝐵 ∈ suc 𝐴 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 11 |
10
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) → ( 𝐴 ∈ 𝐵 ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 12 |
9 11
|
nsyl |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |