Description: The class of finite ordinals _om is ordinal. Theorem 7.32 of TakeutiZaring p. 43. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordom | ⊢ Ord ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom | ⊢ Tr ω | |
2 | omsson | ⊢ ω ⊆ On | |
3 | ordon | ⊢ Ord On | |
4 | trssord | ⊢ ( ( Tr ω ∧ ω ⊆ On ∧ Ord On ) → Ord ω ) | |
5 | 1 2 3 4 | mp3an | ⊢ Ord ω |