Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
2 |
|
opex |
⊢ 〈 𝐶 , 𝐷 〉 ∈ V |
3 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑥 ∈ ( N × N ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) ) |
5 |
4
|
anbi1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
7 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ↔ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ) |
8 |
|
op1stg |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
9 |
7 8
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
11 |
6 10
|
sylan9eq |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( 1st ‘ 𝑥 ) = 𝐴 ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
14 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
15 |
7 14
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
16 |
15
|
adantr |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
17 |
13 16
|
sylan9eq |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( 2nd ‘ 𝑥 ) = 𝐵 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) |
19 |
12 18
|
breq12d |
⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ) → ( ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ↔ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) |
20 |
19
|
pm5.32da |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) ) |
21 |
5 20
|
bitrd |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) ) |
22 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 𝑦 ∈ ( N × N ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) ) |
24 |
23
|
anbi1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) |
26 |
|
opelxp |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ↔ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) |
27 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
28 |
26 27
|
sylbi |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
29 |
28
|
adantl |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
30 |
25 29
|
sylan9eq |
⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( 2nd ‘ 𝑦 ) = 𝐷 ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) = ( 𝐴 ·N 𝐷 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) |
33 |
|
op1stg |
⊢ ( ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
34 |
26 33
|
sylbi |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
35 |
34
|
adantl |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
36 |
32 35
|
sylan9eq |
⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( 1st ‘ 𝑦 ) = 𝐶 ) |
37 |
36
|
oveq1d |
⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) = ( 𝐶 ·N 𝐵 ) ) |
38 |
31 37
|
breq12d |
⊢ ( ( 𝑦 = 〈 𝐶 , 𝐷 〉 ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) → ( ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
39 |
38
|
pm5.32da |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) ) |
40 |
24 39
|
bitrd |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( 𝐴 ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N 𝐵 ) ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) ) |
41 |
|
df-ltpq |
⊢ <pQ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) <N ( ( 1st ‘ 𝑦 ) ·N ( 2nd ‘ 𝑥 ) ) ) } |
42 |
1 2 21 40 41
|
brab |
⊢ ( 〈 𝐴 , 𝐵 〉 <pQ 〈 𝐶 , 𝐷 〉 ↔ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
43 |
|
simpr |
⊢ ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) → ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) |
44 |
|
ltrelpi |
⊢ <N ⊆ ( N × N ) |
45 |
44
|
brel |
⊢ ( ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) → ( ( 𝐴 ·N 𝐷 ) ∈ N ∧ ( 𝐶 ·N 𝐵 ) ∈ N ) ) |
46 |
|
dmmulpi |
⊢ dom ·N = ( N × N ) |
47 |
|
0npi |
⊢ ¬ ∅ ∈ N |
48 |
46 47
|
ndmovrcl |
⊢ ( ( 𝐴 ·N 𝐷 ) ∈ N → ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ) |
49 |
46 47
|
ndmovrcl |
⊢ ( ( 𝐶 ·N 𝐵 ) ∈ N → ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) |
50 |
48 49
|
anim12i |
⊢ ( ( ( 𝐴 ·N 𝐷 ) ∈ N ∧ ( 𝐶 ·N 𝐵 ) ∈ N ) → ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) ) |
51 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) |
52 |
51
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ) |
53 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 𝐶 ∈ N ) |
54 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 𝐷 ∈ N ) |
55 |
53 54
|
opelxpd |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) |
56 |
52 55
|
jca |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐷 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐵 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) |
57 |
45 50 56
|
3syl |
⊢ ( ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ) |
58 |
57
|
ancri |
⊢ ( ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ) |
59 |
43 58
|
impbii |
⊢ ( ( ( 〈 𝐴 , 𝐵 〉 ∈ ( N × N ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( N × N ) ) ∧ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) |
60 |
42 59
|
bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 <pQ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ·N 𝐷 ) <N ( 𝐶 ·N 𝐵 ) ) |