| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝑥  ∈  ( 𝒫  𝐴  ∩  On )  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  ∈  On ) ) | 
						
							| 2 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 3 | 2 | anbi2ci | ⊢ ( ( 𝑥  ∈  𝒫  𝐴  ∧  𝑥  ∈  On )  ↔  ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 ) ) | 
						
							| 4 | 1 3 | bitri | ⊢ ( 𝑥  ∈  ( 𝒫  𝐴  ∩  On )  ↔  ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 ) ) | 
						
							| 5 |  | ordsssuc | ⊢ ( ( 𝑥  ∈  On  ∧  Ord  𝐴 )  →  ( 𝑥  ⊆  𝐴  ↔  𝑥  ∈  suc  𝐴 ) ) | 
						
							| 6 | 5 | expcom | ⊢ ( Ord  𝐴  →  ( 𝑥  ∈  On  →  ( 𝑥  ⊆  𝐴  ↔  𝑥  ∈  suc  𝐴 ) ) ) | 
						
							| 7 | 6 | pm5.32d | ⊢ ( Ord  𝐴  →  ( ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 )  ↔  ( 𝑥  ∈  On  ∧  𝑥  ∈  suc  𝐴 ) ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑥  ∈  On  ∧  𝑥  ∈  suc  𝐴 )  →  𝑥  ∈  suc  𝐴 ) | 
						
							| 9 |  | ordsuc | ⊢ ( Ord  𝐴  ↔  Ord  suc  𝐴 ) | 
						
							| 10 |  | ordelon | ⊢ ( ( Ord  suc  𝐴  ∧  𝑥  ∈  suc  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 11 | 10 | ex | ⊢ ( Ord  suc  𝐴  →  ( 𝑥  ∈  suc  𝐴  →  𝑥  ∈  On ) ) | 
						
							| 12 | 9 11 | sylbi | ⊢ ( Ord  𝐴  →  ( 𝑥  ∈  suc  𝐴  →  𝑥  ∈  On ) ) | 
						
							| 13 | 12 | ancrd | ⊢ ( Ord  𝐴  →  ( 𝑥  ∈  suc  𝐴  →  ( 𝑥  ∈  On  ∧  𝑥  ∈  suc  𝐴 ) ) ) | 
						
							| 14 | 8 13 | impbid2 | ⊢ ( Ord  𝐴  →  ( ( 𝑥  ∈  On  ∧  𝑥  ∈  suc  𝐴 )  ↔  𝑥  ∈  suc  𝐴 ) ) | 
						
							| 15 | 7 14 | bitrd | ⊢ ( Ord  𝐴  →  ( ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 )  ↔  𝑥  ∈  suc  𝐴 ) ) | 
						
							| 16 | 4 15 | bitrid | ⊢ ( Ord  𝐴  →  ( 𝑥  ∈  ( 𝒫  𝐴  ∩  On )  ↔  𝑥  ∈  suc  𝐴 ) ) | 
						
							| 17 | 16 | eqrdv | ⊢ ( Ord  𝐴  →  ( 𝒫  𝐴  ∩  On )  =  suc  𝐴 ) |