Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of TakeutiZaring p. 38. (Contributed by NM, 18-May-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon | ⊢ Ord On | |
2 | ordeleqon | ⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) | |
3 | 2 | biimpi | ⊢ ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
4 | 3 | adantr | ⊢ ( ( Ord 𝐴 ∧ Ord On ) → ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
5 | ordsseleq | ⊢ ( ( Ord 𝐴 ∧ Ord On ) → ( 𝐴 ⊆ On ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) ) | |
6 | 4 5 | mpbird | ⊢ ( ( Ord 𝐴 ∧ Ord On ) → 𝐴 ⊆ On ) |
7 | 1 6 | mpan2 | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |