Metamath Proof Explorer


Theorem ordsson

Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of TakeutiZaring p. 38. (Contributed by NM, 18-May-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsson ( Ord 𝐴𝐴 ⊆ On )

Proof

Step Hyp Ref Expression
1 ordon Ord On
2 ordeleqon ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) )
3 2 biimpi ( Ord 𝐴 → ( 𝐴 ∈ On ∨ 𝐴 = On ) )
4 3 adantr ( ( Ord 𝐴 ∧ Ord On ) → ( 𝐴 ∈ On ∨ 𝐴 = On ) )
5 ordsseleq ( ( Ord 𝐴 ∧ Ord On ) → ( 𝐴 ⊆ On ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) )
6 4 5 mpbird ( ( Ord 𝐴 ∧ Ord On ) → 𝐴 ⊆ On )
7 1 6 mpan2 ( Ord 𝐴𝐴 ⊆ On )