Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsssuc | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 2 | ordsseleq | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 4 | elsucg | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 6 | 3 5 | bitr4d | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |