Metamath Proof Explorer


Theorem ordsssuc

Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordsssuc ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐴 ∈ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 ordsseleq ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
3 1 2 sylan ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
4 elsucg ( 𝐴 ∈ On → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
5 4 adantr ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
6 3 5 bitr4d ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐴 ∈ suc 𝐵 ) )