| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elong | 
							⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  On  ↔  Ord  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimprd | 
							⊢ ( 𝐴  ∈  V  →  ( Ord  𝐴  →  𝐴  ∈  On ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							anim1d | 
							⊢ ( 𝐴  ∈  V  →  ( ( Ord  𝐴  ∧  𝐵  ∈  On )  →  ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							onsssuc | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl6 | 
							⊢ ( 𝐴  ∈  V  →  ( ( Ord  𝐴  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							annim | 
							⊢ ( ( 𝐵  ∈  On  ∧  ¬  𝐴  ∈  V )  ↔  ¬  ( 𝐵  ∈  On  →  𝐴  ∈  V ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  On )  →  𝐴  ∈  V )  | 
						
						
							| 8 | 
							
								7
							 | 
							ex | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐵  ∈  On  →  𝐴  ∈  V ) )  | 
						
						
							| 9 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐴  ∈  suc  𝐵  →  𝐴  ∈  V )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1d | 
							⊢ ( 𝐴  ∈  suc  𝐵  →  ( 𝐵  ∈  On  →  𝐴  ∈  V ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							pm5.21ni | 
							⊢ ( ¬  ( 𝐵  ∈  On  →  𝐴  ∈  V )  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							sylbi | 
							⊢ ( ( 𝐵  ∈  On  ∧  ¬  𝐴  ∈  V )  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							expcom | 
							⊢ ( ¬  𝐴  ∈  V  →  ( 𝐵  ∈  On  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantld | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ( Ord  𝐴  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) ) )  | 
						
						
							| 15 | 
							
								5 14
							 | 
							pm2.61i | 
							⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  𝐴  ∈  suc  𝐵 ) )  |