Step |
Hyp |
Ref |
Expression |
1 |
|
elong |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) |
2 |
1
|
biimprd |
⊢ ( 𝐴 ∈ V → ( Ord 𝐴 → 𝐴 ∈ On ) ) |
3 |
2
|
anim1d |
⊢ ( 𝐴 ∈ V → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ) |
4 |
|
onsssuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
5 |
3 4
|
syl6 |
⊢ ( 𝐴 ∈ V → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) ) |
6 |
|
annim |
⊢ ( ( 𝐵 ∈ On ∧ ¬ 𝐴 ∈ V ) ↔ ¬ ( 𝐵 ∈ On → 𝐴 ∈ V ) ) |
7 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ On ) → 𝐴 ∈ V ) |
8 |
7
|
ex |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ On → 𝐴 ∈ V ) ) |
9 |
|
elex |
⊢ ( 𝐴 ∈ suc 𝐵 → 𝐴 ∈ V ) |
10 |
9
|
a1d |
⊢ ( 𝐴 ∈ suc 𝐵 → ( 𝐵 ∈ On → 𝐴 ∈ V ) ) |
11 |
8 10
|
pm5.21ni |
⊢ ( ¬ ( 𝐵 ∈ On → 𝐴 ∈ V ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
12 |
6 11
|
sylbi |
⊢ ( ( 𝐵 ∈ On ∧ ¬ 𝐴 ∈ V ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |
13 |
12
|
expcom |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) ) |
14 |
13
|
adantld |
⊢ ( ¬ 𝐴 ∈ V → ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) ) |
15 |
5 14
|
pm2.61i |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵 ) ) |