Metamath Proof Explorer


Theorem ordssun

Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordssun ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ordtri2or2 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵𝐶𝐶𝐵 ) )
2 ssequn1 ( 𝐵𝐶 ↔ ( 𝐵𝐶 ) = 𝐶 )
3 sseq2 ( ( 𝐵𝐶 ) = 𝐶 → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴𝐶 ) )
4 2 3 sylbi ( 𝐵𝐶 → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴𝐶 ) )
5 olc ( 𝐴𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
6 4 5 syl6bi ( 𝐵𝐶 → ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐵𝐴𝐶 ) ) )
7 ssequn2 ( 𝐶𝐵 ↔ ( 𝐵𝐶 ) = 𝐵 )
8 sseq2 ( ( 𝐵𝐶 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴𝐵 ) )
9 7 8 sylbi ( 𝐶𝐵 → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴𝐵 ) )
10 orc ( 𝐴𝐵 → ( 𝐴𝐵𝐴𝐶 ) )
11 9 10 syl6bi ( 𝐶𝐵 → ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐵𝐴𝐶 ) ) )
12 6 11 jaoi ( ( 𝐵𝐶𝐶𝐵 ) → ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐵𝐴𝐶 ) ) )
13 1 12 syl ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐵𝐴𝐶 ) ) )
14 ssun ( ( 𝐴𝐵𝐴𝐶 ) → 𝐴 ⊆ ( 𝐵𝐶 ) )
15 13 14 impbid1 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )