Step |
Hyp |
Ref |
Expression |
1 |
|
ordtri2or2 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |
2 |
|
ssequn1 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) |
3 |
|
sseq2 |
⊢ ( ( 𝐵 ∪ 𝐶 ) = 𝐶 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) |
4 |
2 3
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) |
5 |
|
olc |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) |
6 |
4 5
|
syl6bi |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
7 |
|
ssequn2 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐵 ) |
8 |
|
sseq2 |
⊢ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐵 ) ) |
9 |
7 8
|
sylbi |
⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐵 ) ) |
10 |
|
orc |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) |
11 |
9 10
|
syl6bi |
⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
12 |
6 11
|
jaoi |
⊢ ( ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
13 |
1 12
|
syl |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |
14 |
|
ssun |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) → 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ) |
15 |
13 14
|
impbid1 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶 ) ) ) |