Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐵 ) |
2 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
3 |
1 2
|
jca |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( Ord 𝐵 ∧ Ord 𝐴 ) ) |
4 |
|
simpl |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐵 ) |
5 |
|
ordsuc |
⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) |
6 |
|
ordelord |
⊢ ( ( Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord suc 𝐴 ) |
7 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
8 |
6 7
|
sylibr |
⊢ ( ( Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐴 ) |
9 |
5 8
|
sylanb |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐴 ) |
10 |
4 9
|
jca |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → ( Ord 𝐵 ∧ Ord 𝐴 ) ) |
11 |
|
ordsseleq |
⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
12 |
7 11
|
sylanb |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
13 |
12
|
ancoms |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
15 |
|
ordsucss |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
16 |
15
|
ad2antrl |
⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
17 |
|
sucssel |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
19 |
16 18
|
impbid |
⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) ) |
20 |
|
sucexb |
⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |
21 |
|
elsucg |
⊢ ( suc 𝐴 ∈ V → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
22 |
20 21
|
sylbi |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
24 |
14 19 23
|
3bitr4d |
⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
25 |
24
|
ex |
⊢ ( 𝐴 ∈ V → ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) ) |
26 |
|
elex |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) |
27 |
|
elex |
⊢ ( suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V ) |
28 |
27 20
|
sylibr |
⊢ ( suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ V ) |
29 |
26 28
|
pm5.21ni |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
30 |
29
|
a1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) ) |
31 |
25 30
|
pm2.61i |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
32 |
3 10 31
|
pm5.21nd |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |